Switch to: References

Add citations

You must login to add citations.
  1. INVENTING LOGIC: THE LÖWENHEIM-SKOLEM THEOREM AND FIRST- AND SECOND-ORDER LOGIC.Valérie Lynn Therrien - 2012 - Pensées Canadiennes 10.
    Download  
     
    Export citation  
     
    Bookmark  
  • Brains in vats and model theory.Tim Button - 2015 - In Sanford Goldberg (ed.), The Brain in a Vat. United Kingdom: Cambridge University Press. pp. 131-154.
    Hilary Putnam’s BIV argument first occurred to him when ‘thinking about a theorem in modern logic, the “Skolem–Löwenheim Theorem”’ (Putnam 1981: 7). One of my aims in this paper is to explore the connection between the argument and the Theorem. But I also want to draw some further connections. In particular, I think that Putnam’s BIV argument provides us with an impressively versatile template for dealing with sceptical challenges. Indeed, this template allows us to unify some of Putnam’s most enduring (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Mathematics of Skolem's Paradox.Timothy Bays - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 615--648.
    Over the years, Skolem’s Paradox has generated a fairly steady stream of philosophical discussion; nonetheless, the overwhelming consensus among philosophers and logicians is that the paradox doesn’t constitute a mathematical problem (i.e., it doesn’t constitute a real contradiction). Further, there’s general agreement as to why the paradox doesn’t constitute a mathematical problem. By looking at the way firstorder structures interpret quantifiers—and, in particular, by looking at how this interpretation changes as we move from structure to structure—we can give a technically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • تحلیل منطقی فلسفی پارادوکس اسکولم. Mansooreh - 2015 - Dissertation,
    ریاضیدانان هرروز با مجموعههای ناشمارا، مجموعهی توانی، خوشترتیبی، تناهی و ... سروکار دارند و با این تصور که این مفاهیم همان چیزهایی هستند که در ذهن دارند، کتابها و اثباتهای ریاضی را میخوانند و میفهمند و درمورد آنها صحبت میکنند. اما آیا این مفاهیم همان چیزهایی هستند که ریاضیدانان تصور میکنند؟ اولینبار اسکولم با بیان یک پارادوکس شک خود را به این موضوع ابراز کرد. بنابر قضیهی لوونهایم اسکولم رو به پایین، نظریه مجموعهها مدلی شمارا دارد. این مدل قضیهی کانتور (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Skolem, the Skolem 'Paradox' and Informal Mathematics.Luca Bellotti - 2006 - Theoria 72 (3):177-212.
    I discuss Skolem's own ideas on his ‘paradox’, some classical disputes between Skolemites and Antiskolemites, and the underlying notion of ‘informal mathematics’, from a point of view which I hope to be rather unusual. I argue that the Skolemite cannot maintain that from an absolute point of view everything is in fact denumerable; on the other hand, the Antiskolemite is left with the onus of explaining the notion of informal mathematical knowledge of the intended model of set theory. 1 conclude (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Generalized logical consequence: Making room for induction in the logic of science. [REVIEW]Samir Chopra & Eric Martin - 2002 - Journal of Philosophical Logic 31 (3):245-280.
    We present a framework that provides a logic for science by generalizing the notion of logical (Tarskian) consequence. This framework will introduce hierarchies of logical consequences, the first level of each of which is identified with deduction. We argue for identification of the second level of the hierarchies with inductive inference. The notion of induction presented here has some resonance with Popper's notion of scientific discovery by refutation. Our framework rests on the assumption of a restricted class of structures in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Putnam’s model-theoretic argument (meta)reconstructed: In the mirror of Carpintero’s and van Douven’s interpretations.Krystian Jobczyk - 2022 - Synthese 200 (6):1-37.
    In “Models and Reality”, H. Putnam formulated his model-theoretic argument against “metaphysical realism”. The article proposes a meta-reconstruction of Putnam’s model-theoretic argument in the light of two mutually compatible interpretations of it–elaborated by Manuel Garcia-Carpintero and Igor van Douven. A critical reflection on these interpretations and their adequacy for Putnam’s argument allows us to expose new theses coherent with Putnam’s reasoning and indicate new paths to improve this argument for our reconstruction task. In particular, we show that Putnam’s position may (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “Mathematics is the Logic of the Infinite”: Zermelo’s Project of Infinitary Logic.Jerzy Pogonowski - 2021 - Studies in Logic, Grammar and Rhetoric 66 (3):673-708.
    In this paper I discuss Ernst Zermelo’s ideas concerning the possibility of developing a system of infinitary logic that, in his opinion, should be suitable for mathematical inferences. The presentation of Zermelo’s ideas is accompanied with some remarks concerning the development of infinitary logic. I also stress the fact that the second axiomatization of set theory provided by Zermelo in 1930 involved the use of extremal axioms of a very specific sort.1.
    Download  
     
    Export citation  
     
    Bookmark