Switch to: References

Add citations

You must login to add citations.
  1. Using criticalities as a heuristic for answer set programming.Orkunt Sabuncu, Ferda N. Alpaslan & Varol Akman - 2003 - In Vladimir Lifschitz & Ilkka Niemela (eds.), Logic Programming and Nonmonotonic Reasoning, Lecture Notes in Artificial Intelligence 2923 (7th International Conference, LPNMR 2004, Fort Lauderdale, FL, January 6-8, 2004 Proceedings). Berlin, Heidelberg: Springer. pp. 234-246.
    Answer Set Programming is a new paradigm based on logic programming. The main component of answer set programming is a system that finds the answer sets of logic programs. During the computation of an answer set, systems are faced with choice points where they have to select a literal and assign it a truth value. Generally, systems utilize some heuristics to choose new literals at the choice points. The heuristic used is one of the key factors for the performance of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The influence of k-dependence on the complexity of planning.Omer Giménez & Anders Jonsson - 2012 - Artificial Intelligence 177-179 (C):25-45.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Abstraction for non-ground answer set programs.Zeynep G. Saribatur, Thomas Eiter & Peter Schüller - 2021 - Artificial Intelligence 300 (C):103563.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Speeding up problem solving by abstraction: a graph oriented approach.R. C. Holte, T. Mkadmi, R. M. Zimmer & A. J. MacDonald - 1996 - Artificial Intelligence 85 (1-2):321-361.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Automatically selecting and using primary effects in planning: theory and experiments.Eugene Fink & Qiang Yang - 1997 - Artificial Intelligence 89 (1-2):285-315.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computational research on interaction and agency.Philip E. Agre - 1995 - Artificial Intelligence 72 (1-2):1-52.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Reward-respecting subtasks for model-based reinforcement learning.Richard S. Sutton, Marlos C. Machado, G. Zacharias Holland, David Szepesvari, Finbarr Timbers, Brian Tanner & Adam White - 2023 - Artificial Intelligence 324 (C):104001.
    Download  
     
    Export citation  
     
    Bookmark  
  • Star-topology decoupled state space search.Daniel Gnad & Jörg Hoffmann - 2018 - Artificial Intelligence 257 (C):24-60.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Red–black planning: A new systematic approach to partial delete relaxation.Carmel Domshlak, Jörg Hoffmann & Michael Katz - 2015 - Artificial Intelligence 221 (C):73-114.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Symbolic perimeter abstraction heuristics for cost-optimal planning.Álvaro Torralba, Carlos Linares López & Daniel Borrajo - 2018 - Artificial Intelligence 259 (C):1-31.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Learning metric-topological maps for indoor mobile robot navigation.Sebastian Thrun - 1998 - Artificial Intelligence 99 (1):21-71.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Calculating criticalities.A. Bundy, F. Giunchiglia, R. Sebastiani & T. Walsh - 1996 - Artificial Intelligence 88 (1-2):39-67.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Planning as refinement search: a unified framework for evaluating design tradeoffs in partial-order planning.Subbarao Kambhampati, Craig A. Knoblock & Qiang Yang - 1995 - Artificial Intelligence 76 (1-2):167-238.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • A framework for analysing state-abstraction methods.Christer Bäckström & Peter Jonsson - 2022 - Artificial Intelligence 302 (C):103608.
    Download  
     
    Export citation  
     
    Bookmark  
  • Planning the project management way: Efficient planning by effective integration of causal and resource reasoning in RealPlan.Biplav Srivastava, Subbarao Kambhampati & Minh B. Do - 2001 - Artificial Intelligence 131 (1-2):73-134.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Abstraction and approximate decision-theoretic planning.Richard Dearden & Craig Boutilier - 1997 - Artificial Intelligence 89 (1-2):219-283.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Limitations of acyclic causal graphs for planning.Anders Jonsson, Peter Jonsson & Tomas Lööw - 2014 - Artificial Intelligence 210 (C):36-55.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The impact of representation on the efficacy of Artificial intelligence: The case of genetic algorithms. [REVIEW]Robert Zimmer, Robert Holte & Alan MacDonald - 1997 - AI and Society 11 (1-2):76-87.
    This paper is about representations for Artificial Intelligence systems. All of the results described in it involve engineering the representation to make AI systems more effective. The main AI techniques studied here are varieties of search: path-finding in graphs, and probablilistic searching via simulated annealing and genetic algorithms. The main results are empirical findings about the granularity of representation in implementations of genetic algorithms. We conclude by proposing a new algorithm, called “Long-Term Evolution,” which is a genetic algorithm running on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The computational complexity of avoiding spurious states in state space abstraction.Sandra Zilles & Robert C. Holte - 2010 - Artificial Intelligence 174 (14):1072-1092.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Proving theorems by reuse.Christoph Walther & Thomas Kolbe - 2000 - Artificial Intelligence 116 (1-2):17-66.
    Download  
     
    Export citation  
     
    Bookmark  
  • Backdoors to planning.Martin Kronegger, Sebastian Ordyniak & Andreas Pfandler - 2019 - Artificial Intelligence 269 (C):49-75.
    Download  
     
    Export citation  
     
    Bookmark  
  • A new result on the complexity of heuristic estimates for the A★ algorithm.Othar Hansson, Andrew Mayer & Marco Valtorta - 1992 - Artificial Intelligence 55 (1):129-143.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the complexity of planning for agent teams and its implications for single agent planning.Ronen I. Brafman & Carmel Domshlak - 2013 - Artificial Intelligence 198 (C):52-71.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Using temporal logics to express search control knowledge for planning.Fahiem Bacchus & Froduald Kabanza - 2000 - Artificial Intelligence 116 (1-2):123-191.
    Download  
     
    Export citation  
     
    Bookmark   24 citations