Switch to: References

Add citations

You must login to add citations.
  1. (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The Modal Logic of Potential Infinity: Branching Versus Convergent Possibilities.Ethan Brauer - 2022 - Erkenntnis 87 (5):2161-2179.
    Modal logic provides an elegant way to understand the notion of potential infinity. This raises the question of what the right modal logic is for reasoning about potential infinity. In this article I identify a choice point in determining the right modal logic: Can a potentially infinite collection ever be expanded in two mutually incompatible ways? If not, then the possible expansions are convergent; if so, then the possible expansions are branching. When possible expansions are convergent, the right modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The Modal Logic of Potential Infinity: Branching Versus Convergent Possibilities.Ethan Brauer - 2020 - Erkenntnis:1-19.
    Modal logic provides an elegant way to understand the notion of potential infinity. This raises the question of what the right modal logic is for reasoning about potential infinity. In this article I identify a choice point in determining the right modal logic: Can a potentially infinite collection ever be expanded in two mutually incompatible ways? If not, then the possible expansions are convergent; if so, then the possible expansions are branching. When possible expansions are convergent, the right modal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Logicism, Ontology, and the Epistemology of Second-Order Logic.Richard Kimberly Heck - 2018 - In Ivette Fred Rivera & Jessica Leech (eds.), Being Necessary: Themes of Ontology and Modality from the Work of Bob Hale. Oxford, England: Oxford University Press. pp. 140-169.
    In two recent papers, Bob Hale has attempted to free second-order logic of the 'staggering existential assumptions' with which Quine famously attempted to saddle it. I argue, first, that the ontological issue is at best secondary: the crucial issue about second-order logic, at least for a neo-logicist, is epistemological. I then argue that neither Crispin Wright's attempt to characterize a `neutralist' conception of quantification that is wholly independent of existential commitment, nor Hale's attempt to characterize the second-order domain in terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Metalogic and the Overgeneration Argument.Salvatore Florio & Luca Incurvati - 2019 - Mind 128 (511):761-793.
    A prominent objection against the logicality of second-order logic is the so-called Overgeneration Argument. However, it is far from clear how this argument is to be understood. In the first part of the article, we examine the argument and locate its main source, namely, the alleged entanglement of second-order logic and mathematics. We then identify various reasons why the entanglement may be thought to be problematic. In the second part of the article, we take a metatheoretic perspective on the matter. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag. pp. 65-82.
    This paper examines the philosophical significance of the consequence relation defined in the $\Omega$-logic for set-theoretic languages. I argue that, as with second-order logic, the hyperintensional profile of validity in $\Omega$-Logic enables the property to be epistemically tractable. Because of the duality between coalgebras and algebras, Boolean-valued models of set theory can be interpreted as coalgebras. In Section \textbf{2}, I demonstrate how the hyperintensional profile of $\Omega$-logical validity can be countenanced within a coalgebraic logic. Finally, in Section \textbf{3}, the philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hyperintensional Category Theory and Indefinite Extensibility.David Elohim - manuscript
    This essay endeavors to define the concept of indefinite extensibility in the setting of category theory. I argue that the generative property of indefinite extensibility for set-theoretic truths in category theory is identifiable with the Grothendieck Universe Axiom and the elementary embeddings in Vopenka's principle. The interaction between the interpretational and objective modalities of indefinite extensibility is defined via the epistemic interpretation of two-dimensional semantics. The semantics can be defined intensionally or hyperintensionally. By characterizing the modal profile of $\Omega$-logical validity, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017 - Dissertation, Arché, University of St Andrews
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Forms of Luminosity: Epistemic Modality and Hyperintensionality in Mathematics.David Elohim - 2017
    This book concerns the foundations of epistemic modality and hyperintensionality and their applications to the philosophy of mathematics. David Elohim examines the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality and hyperintensionality relate to the computational theory of mind; metaphysical modality and hyperintensionality; the types of mathematical modality and hyperintensionality; to the epistemic status of large cardinal axioms, undecidable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Second-order Logic and the Power Set.Ethan Brauer - 2018 - Journal of Philosophical Logic 47 (1):123-142.
    Ignacio Jane has argued that second-order logic presupposes some amount of set theory and hence cannot legitimately be used in axiomatizing set theory. I focus here on his claim that the second-order formulation of the Axiom of Separation presupposes the character of the power set operation, thereby preventing a thorough study of the power set of infinite sets, a central part of set theory. In reply I argue that substantive issues often cannot be separated from a logic, but rather must (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Structural-Abstraction Principles.Graham Leach-Krouse - 2015 - Philosophia Mathematica:nkv033.
    In this paper, I present a class of ‘structural’ abstraction principles, and describe how they are suggested by some features of Cantor's and Dedekind's approach to abstraction. Structural abstraction is a promising source of mathematically tractable new axioms for the neo-logicist. I illustrate this by showing, first, how a theorem of Shelah gives a sufficient condition for consistency in the structural setting, solving what neo-logicists call the ‘bad company’ problem for structural abstraction. Second, I show how, in the structural setting, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Transfinite recursion and computation in the iterative conception of set.Benjamin Rin - 2015 - Synthese 192 (8):2437-2462.
    Transfinite recursion is an essential component of set theory. In this paper, we seek intrinsically justified reasons for believing in recursion and the notions of higher computation that surround it. In doing this, we consider several kinds of recursion principles and prove results concerning their relation to one another. We then consider philosophical motivations for these formal principles coming from the idea that computational notions lie at the core of our conception of set. This is significant because, while the iterative (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Infinity and a Critical View of Logic.Charles Parsons - 2015 - Inquiry: An Interdisciplinary Journal of Philosophy 58 (1):1-19.
    The paper explores the view that in mathematics, in particular where the infinite is involved, the application of classical logic to statements involving the infinite cannot be taken for granted. L. E. J. Brouwer’s well-known rejection of classical logic is sketched, and the views of David Hilbert and especially Hermann Weyl, both of whom used classical logic in their mathematical practice, are explored. We inquire whether arguments for a critical view can be found that are independent of constructivist premises and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • (2 other versions)Hyperintensional Ω-Logic.David Elohim - 2019 - In Matteo Vincenzo D'Alfonso & Don Berkich (eds.), On the Cognitive, Ethical, and Scientific Dimensions of Artificial Intelligence. Springer Verlag.
    This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The hyperintensional profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal and hyperintensional profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations