# Abstract

This essay examines the philosophical significance of $\Omega$-logic in Zermelo-Fraenkel set theory with choice (ZFC). The categorical duality between coalgebra and algebra permits Boolean-valued algebraic models of ZFC to be interpreted as coalgebras. The modal profile of $\Omega$-logical validity can then be countenanced within a coalgebraic logic, and $\Omega$-logical validity can be defined via deterministic automata. I argue that the philosophical significance of the foregoing is two-fold. First, because the epistemic and modal profiles of $\Omega$-logical validity correspond to those of second-order logical consequence, $\Omega$-logical validity is genuinely logical. Second, the foregoing provides a modal account of the interpretation of mathematical vocabulary.