Switch to: References

Citations of:

Proof and Falsity: A Logical Investigation

Cambridge, UK: Cambridge University Press (2019)

Add citations

You must login to add citations.
  1. Molecularity in the Theory of Meaning and the Topic Neutrality of Logic.Bernhard Weiss & Nils Kürbis - 2024 - In Antonio Piccolomini D'Aragona (ed.), Perspectives on Deduction: Contemporary Studies in the Philosophy, History and Formal Theories of Deduction. Springer Verlag. pp. 187-209.
    Without directly addressing the Demarcation Problem for logic—the problem of distinguishing logical vocabulary from others—we focus on distinctive aspects of logical vocabulary in pursuit of a second goal in the philosophy of logic, namely, proposing criteria for the justification of logical rules. Our preferred approach has three components. Two of these are effectively Belnap’s, but with a twist. We agree with Belnap’s response to Prior’s challenge to inferentialist characterisations of the meanings of logical constants. Belnap argued that for a logical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A General Schema for Bilateral Proof Rules.Ryan Simonelli - 2024 - Journal of Philosophical Logic (3):1-34.
    Bilateral proof systems, which provide rules for both affirming and denying sentences, have been prominent in the development of proof-theoretic semantics for classical logic in recent years. However, such systems provide a substantial amount of freedom in the formulation of the rules, and, as a result, a number of different sets of rules have been put forward as definitive of the meanings of the classical connectives. In this paper, I argue that a single general schema for bilateral proof rules has (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Supposition: A Problem for Bilateralism.Nils Kürbis - 2023 - Bulletin of the Section of Logic 53 (3):301-327.
    In bilateral logic formulas are signed by + and –, indicating the speech acts assertion and denial. I argue that making an assumption is also speech act. Speech acts cannot be embedded within other speech acts. Hence we cannot make sense of the notion of making an assumption in bilateral logic. Attempts to solve this problem are considered and rejected.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Bilateral Inversion Principles.Nils Kürbis - 2022 - Electronic Proceedings in Theoretical Computer Science 358:202–215.
    This paper formulates a bilateral account of harmony that is an alternative to one proposed by Francez. It builds on an account of harmony for unilateral logic proposed by Kürbis and the observation that reading the rules for the connectives of bilateral logic bottom up gives the grounds and consequences of formulas with the opposite speech act. I formulate a process I call 'inversion' which allows the determination of assertive elimination rules from assertive introduction rules, and rejective elimination rules from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Logical Form and the Limits of Thought.Manish Oza - 2020 - Dissertation, University of Toronto
    What is the relation of logic to thinking? My dissertation offers a new argument for the claim that logic is constitutive of thinking in the following sense: representational activity counts as thinking only if it manifests sensitivity to logical rules. In short, thinking has to be minimally logical. An account of thinking has to allow for our freedom to question or revise our commitments – even seemingly obvious conceptual connections – without loss of understanding. This freedom, I argue, requires that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Definite Descriptions in Intuitionist Positive Free Logic.Nils Kürbis - 2020 - Logic and Logical Philosophy 30:1.
    This paper presents rules of inference for a binary quantifier I for the formalisation of sentences containing definite descriptions within intuitionist positive free logic. I binds one variable and forms a formula from two formulas. Ix[F, G] means ‘The F is G’. The system is shown to have desirable proof-theoretic properties: it is proved that deductions in it can be brought into normal form. The discussion is rounded up by comparisons between the approach to the formalisation of definite descriptions recommended (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Sketch of a Proof-Theoretic Semantics for Necessity.Nils Kürbis - 2020 - In Nicola Olivetti, Rineke Verbrugge & Sara Negri (eds.), Advances in Modal Logic 13. Booklet of Short Papers. Helsinki: pp. 37-43.
    This paper considers proof-theoretic semantics for necessity within Dummett's and Prawitz's framework. Inspired by a system of Pfenning's and Davies's, the language of intuitionist logic is extended by a higher order operator which captures a notion of validity. A notion of relative necessary is defined in terms of it, which expresses a necessary connection between the assumptions and the conclusion of a deduction.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Normalisation and subformula property for a system of intuitionistic logic with general introduction and elimination rules.Nils Kürbis - 2021 - Synthese 199 (5-6):14223-14248.
    This paper studies a formalisation of intuitionistic logic by Negri and von Plato which has general introduction and elimination rules. The philosophical importance of the system is expounded. Definitions of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system are formulated and corresponding reduction procedures for maximal formulas and permutative reduction procedures for maximal segments given. Alternatives to the main method used are also considered. It is shown that deductions in the system convert into normal form and that deductions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Is Incompatibilism Compatible with Fregeanism?Nils Kürbis - 2018 - European Journal of Analytic Philosophy 14 (2):27-46.
    This paper considers whether incompatibilism, the view that negation is to be explained in terms of a primitive notion of incompatibility, and Fregeanism, the view that arithmetical truths are analytic according to Frege’s definition of that term in §3 of Foundations of Arithmetic, can both be upheld simultaneously. Both views are attractive on their own right, in particular for a certain empiricist mind-set. They promise to account for two philosophical puzzling phenomena: the problem of negative truth and the problem of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generality.Nils Kürbis - 2022 - In Nils Kürbis, Bahram Assadian & Jonathan Nassim (eds.), Knowledge, Number and Reality: Encounters with the Work of Keith Hossack. London: Bloomsbury. pp. 161-176.
    Hossack's 'The Metaphysics of Knowledge' develops a theory of facts, entities in which universals are combined with universals or particulars, as the foundation of his metaphysics. While Hossack argues at length that there must be negative facts, facts in which the universal 'negation' is combined with universals or particulars, his conclusion that there are also general facts, facts in which the universal 'generality' is combined with universals, is reached rather more swiftly. In this paper I present Hossack with three arguments (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Proof-Theoretic Semantics.Peter Schroeder-Heister - forthcoming - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • The Logicality of Equality.Andrzej Indrzejczak - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 211-238.
    The status of the equality predicate as a logical constant is problematic. In the paper we look at the problem from the proof-theoretic standpoint and survey several ways of treating equality in formal systems of different sorts. In particular, we focus on the framework of sequent calculus and examine equality in the light of criteria of logicality proposed by Hacking and Došen. Both attempts were formulated in terms of sequent calculus rules, although in the case of Došen it has a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A novel approach to equality.Andrzej Indrzejczak - 2021 - Synthese 199 (1-2):4749-4774.
    A new type of formalization of classical first-order logic with equality is introduced on the basis of the sequent calculus. It serves to justify the claim that equality is a logical constant characterised by well-behaved rules satisfying properties usually regarded as essential. The main feature of this approach is the application of sequents built not only from formulae but also from terms. Two variants of sequent calculus are examined, a structural and a logical one. The former is defined in accordance (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Note on Synonymy in Proof-Theoretic Semantics.Heinrich Wansing - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 339-362.
    The topic of identity of proofs was put on the agenda of general (or structural) proof theory at an early stage. The relevant question is: When are the differences between two distinct proofs (understood as linguistic entities, proof figures) of one and the same formula so inessential that it is justified to identify the two proofs? The paper addresses another question: When are the differences between two distinct formulas so inessential that these formulas admit of identical proofs? The question appears (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations