Switch to: References

Add citations

You must login to add citations.
  1. What rests on what? The proof-theoretic analysis of mathematics.Solomon Feferman - 1993 - In J. Czermak (ed.), Philosophy of Mathematics. Hölder-Pichler-Tempsky. pp. 1--147.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Notes on Constructive Negation.Grigori Mints - 2006 - Synthese 148 (3):701-717.
    We put together several observations on constructive negation. First, Russell anticipated intuitionistic logic by clearly distinguishing propositional principles implying the law of the excluded middle from remaining valid principles. He stated what was later called Peirce’s law. This is important in connection with the method used later by Heyting for developing his axiomatization of intuitionistic logic. Second, a work by Dragalin and his students provides easy embeddings of classical arithmetic and analysis into intuitionistic negationless systems. In the last section, we (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the no-counterexample interpretation.Ulrich Kohlenbach - 1999 - Journal of Symbolic Logic 64 (4):1491-1511.
    In [15], [16] G. Kreisel introduced the no-counterexample interpretation (n.c.i.) of Peano arithmetic. In particular he proved, using a complicated ε-substitution method (due to W. Ackermann), that for every theorem A (A prenex) of first-order Peano arithmetic PA one can find ordinal recursive functionals Φ A of order type 0 which realize the Herbrand normal form A H of A. Subsequently more perspicuous proofs of this fact via functional interpretation (combined with normalization) and cut-elimination were found. These proofs however do (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Gödelian Inferences.Curtis Franks - 2009 - History and Philosophy of Logic 30 (3):241-256.
    I attribute an 'intensional reading' of the second incompleteness theorem to its author, Kurt G del. My argument builds partially on an analysis of intensional and extensional conceptions of meta-mathematics and partially on the context in which G del drew two familiar inferences from his theorem. Those inferences, and in particular the way that they appear in G del's writing, are so dubious on the extensional conception that one must doubt that G del could have understood his theorem extensionally. However, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Constructive Valuation Semantics for Classical Logic.Franco Barbanera & Stefano Berardi - 1996 - Notre Dame Journal of Formal Logic 37 (3):462-482.
    This paper presents a constructive interpretation for the proofs in classical logic of $\Sigma^0_1$ -sentences and for a witness extraction procedure based on Prawitz's reduction rules.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Quantum Strategy of Completeness: On the Self-Foundation of Mathematics.Vasil Penchev - 2020 - Cultural Anthropology eJournal (Elsevier: SSRN) 5 (136):1-12.
    Gentzen’s approach by transfinite induction and that of intuitionist Heyting arithmetic to completeness and the self-foundation of mathematics are compared and opposed to the Gödel incompleteness results as to Peano arithmetic. Quantum mechanics involves infinity by Hilbert space, but it is finitist as any experimental science. The absence of hidden variables in it interpretable as its completeness should resurrect Hilbert’s finitism at the cost of relevant modification of the latter already hinted by intuitionism and Gentzen’s approaches for completeness. This paper (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Mathematical Model of Quantum Computer by Both Arithmetic and Set Theory.Vasil Penchev - 2020 - Information Theory and Research eJournal 1 (15):1-13.
    A practical viewpoint links reality, representation, and language to calculation by the concept of Turing (1936) machine being the mathematical model of our computers. After the Gödel incompleteness theorems (1931) or the insolvability of the so-called halting problem (Turing 1936; Church 1936) as to a classical machine of Turing, one of the simplest hypotheses is completeness to be suggested for two ones. That is consistent with the provability of completeness by means of two independent Peano arithmetics discussed in Section I. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Representation and Reality by Language: How to make a home quantum computer?Vasil Penchev - 2020 - Philosophy of Science eJournal (Elsevier: SSRN) 13 (34):1-14.
    A set theory model of reality, representation and language based on the relation of completeness and incompleteness is explored. The problem of completeness of mathematics is linked to its counterpart in quantum mechanics. That model includes two Peano arithmetics or Turing machines independent of each other. The complex Hilbert space underlying quantum mechanics as the base of its mathematical formalism is interpreted as a generalization of Peano arithmetic: It is a doubled infinite set of doubled Peano arithmetics having a remarkable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Hilbert's Program Revisited.Panu Raatikainen - 2003 - Synthese 137 (1-2):157-177.
    After sketching the main lines of Hilbert's program, certain well-known andinfluential interpretations of the program are critically evaluated, and analternative interpretation is presented. Finally, some recent developments inlogic related to Hilbert's program are reviewed.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Klassinen matematiikka ja logiikka.Panu Raatikainen - 1996 - In Christoffer Gefwert (ed.), Logiikka, matematiikka ja tietokone – Perusteet: historiaa, filosofiaa ja sovelluksia. Finnish Artificial Intelligence Society.
    Toisaalta ennennäkemätön äärettömien joukko-opillisten menetelmien hyödyntäminen sekä toisaalta epäilyt niiden hyväksyttävyydestä ja halu oikeuttaa niiden käyttö ovat ratkaisevasti muovanneet vuosisatamme matematiikkaa ja logiikkaa. Tämän kehityksen vaikutus nykyajan filosofiaan on myös ollut valtaisa; merkittävää osaa siitä ei voi edes ymmärtää tuntematta sen yhteyttä tähän matematiikan ja logiikan vallankumoukseen. Lähestymistapoja, jotka tavalla tai toisella hyväksyvät äärettömän matematiikan ja perinteisten logiikan sääntöjen (erityisesti kolmannen poissuljetun lain) soveltamisen myös sen piirissä, on tullut tavaksi kutsua klassiseksi matematiikaksi ja logiikaksi erotuksena nämä hylkäävistä radikaaleista intuitionistisista ja (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Alfred Tarski: Semantic shift, heuristic shift in metamathematics.Hourya Sinaceur - 2001 - Synthese 126 (1-2):49 - 65.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The problem of the simplest Diophantine representation.Panu Raatikainen - 1997 - Nordic Journal of Philosophical Logic 2:47-54.
    Download  
     
    Export citation  
     
    Bookmark   1 citation