We often speak as if there are merely possible people—for example, when we make such claims as that most possible people are never going to be born. Yet most metaphysicians deny that anything is both possibly a person and never born. Since our unreflective talk of merely possible people serves to draw non-trivial distinctions, these metaphysicians owe us some paraphrase by which we can draw those distinctions without committing ourselves to there being merely possible people. We show that such paraphrases (...) are unavailable if we limit ourselves to the expressive resources of even highly infinitary first-order modal languages. We then argue that such paraphrases are available in higher-order modal languages only given certain strong assumptions concerning the metaphysics of properties. We then consider alternative paraphrase strategies, and argue that none of them are tenable. If talk of merely possible people cannot be paraphrased, then it must be taken at face value, in which case it is necessary what individuals there are. Therefore, if it is contingent what individuals there are, then the demands of paraphrase place tight constraints on the metaphysics of properties: either (i) it is necessary what properties there are, or (ii) necessarily equivalent properties are identical, and having properties does not entail even possibly being anything at all. (shrink)
This paper is a study of higher-order contingentism – the view, roughly, that it is contingent what properties and propositions there are. We explore the motivations for this view and various ways in which it might be developed, synthesizing and expanding on work by Kit Fine, Robert Stalnaker, and Timothy Williamson. Special attention is paid to the question of whether the view makes sense by its own lights, or whether articulating the view requires drawing distinctions among possibilities that, according to (...) the view itself, do not exist to be drawn. The paper begins with a non-technical exposition of the main ideas and technical results, which can be read on its own. This exposition is followed by a formal investigation of higher-order contingentism, in which the tools of variable-domain intensional model theory are used to articulate various versions of the view, understood as theories formulated in a higher-order modal language. Our overall assessment is mixed: higher-order contingentism can be fleshed out into an elegant systematic theory, but perhaps only at the cost of abandoning some of its original motivations. (shrink)
According to the structured theory of propositions, if two sentences express the same proposition, then they have the same syntactic structure, with corresponding syntactic constituents expressing the same entities. A number of philosophers have recently focused attention on a powerful argument against this theory, based on a result by Bertrand Russell, which shows that the theory of structured propositions is inconsistent in higher order-logic. This paper explores a response to this argument, which involves restricting the scope of the claim that (...) propositions are structured, so that it does not hold for all propositions whatsoever, but only for those which are expressible using closed sentences of a given formal language. We call this restricted principle Closed Structure, and show that it is consistent in classical higher-order logic. As a schematic principle, the strength of Closed Structure is dependent on the chosen language. For its consistency to be philosophically significant, it also needs to be consistent in every extension of the language which the theorist of structured propositions is apt to accept. But, we go on to show, Closed Structure is in fact inconsistent in a very natural extension of the standard language of higher-order logic, which adds resources for plural talk of propositions. We conclude that this particular strategy of restricting the scope of the claim that propositions are structured is not a compelling response to the argument based on Russell’s result, though we note that for some applications, for instance to propositional attitudes, a restricted thesis in the vicinity may hold some promise. (shrink)
Epistemic two-dimensional semantics is a theory in the philosophy of language that provides an account of meaning which is sensitive to the distinction between necessity and apriority. While this theory is usually presented in an informal manner, I take some steps in formalizing it in this paper. To do so, I define a semantics for a propositional modal logic with operators for the modalities of necessity, actuality, and apriority that captures the relevant ideas of epistemic two-dimensional semantics. I also describe (...) some properties of the logic that are interesting from a philosophical perspective, and apply it to the so-called nesting problem. (shrink)
This paper is concerned with a propositional modal logic with operators for necessity, actuality and apriority. The logic is characterized by a class of relational structures defined according to ideas of epistemic two-dimensional semantics, and can therefore be seen as formalizing the relations between necessity, actuality and apriority according to epistemic two-dimensional semantics. We can ask whether this logic is correct, in the sense that its theorems are all and only the informally valid formulas. This paper gives outlines of two (...) arguments that jointly show that this is the case. The first is intended to show that the logic is informally sound, in the sense that all of its theorems are informally valid. The second is intended to show that it is informally complete, in the sense that all informal validities are among its theorems. In order to give these arguments, a number of independently interesting results concerning the logic are proven. In particular, the soundness and completeness of two proof systems with respect to the semantics is proven (Theorems 2.11 and 2.15), as well as a normal form theorem (Theorem 3.2), an elimination theorem for the actuality operator (Corollary 3.6), and the decidability of the logic (Corollary 3.7). It turns out that the logic invalidates a plausible principle concerning the interaction of apriority and necessity; consequently, a variant semantics is briefly explored on which this principle is valid. The paper concludes by assessing the implications of these results for epistemic two-dimensional semantics. (shrink)
According to propositional contingentism, it is contingent what propositions there are. This paper presents two ways of modeling contingency in what propositions there are using two classes of possible worlds models. The two classes of models are shown to be equivalent as models of contingency in what propositions there are, although they differ as to which other aspects of reality they represent. These constructions are based on recent work by Robert Stalnaker; the aim of this paper is to explain, expand, (...) and, in one aspect, correct Stalnaker's discussion. (shrink)
Certain passages in Kaplan’s ‘Demonstratives’ are often taken to show that non-vacuous sentential operators associated with a certain parameter of sentential truth require a corresponding relativism concerning assertoric contents: namely, their truth values also must vary with that parameter. Thus, for example, the non-vacuity of a temporal sentential operator ‘always’ would require some of its operands to have contents that have different truth values at different times. While making no claims about Kaplan’s intentions, we provide several reconstructions of how such (...) an argument might go, focusing on the case of time and temporal operators as an illustration. What we regard as the most plausible reconstruction of the argument establishes a conclusion similar enough to that attributed to Kaplan. However, the argument overgenerates, leading to absurd consequences. We conclude that we must distinguish assertoric contents from compositional semantic values, and argue that once they are distinguished, the argument fails to establish any substantial conclusions. We also briefly discuss a related argument commonly attributed to Lewis, and a recent variant due to Weber. (shrink)
The models of contingency in what propositions, properties and relations there are developed in Part 1 are related to models of contingency in what propositions there are due to Robert Stalnaker. It is shown that some but not all of the classes of models of Part 1 agree with Stalnaker’s models concerning the patterns of contingency in what propositions there are they admit. Further structural connections between the two kinds of models are explored.
I consider the first-order modal logic which counts as valid those sentences which are true on every interpretation of the non-logical constants. Based on the assumptions that it is necessary what individuals there are and that it is necessary which propositions are necessary, Timothy Williamson has tentatively suggested an argument for the claim that this logic is determined by a possible world structure consisting of an infinite set of individuals and an infinite set of worlds. He notes that only the (...) cardinalities of these sets matters, and that not all pairs of infinite sets determine the same logic. I use so-called two-cardinal theorems from model theory to investigate the space of logics and consequence relations determined by pairs of infinite sets, and show how to eliminate the assumption that worlds are individuals from Williamson’s argument. (shrink)
Timothy Williamson has argued that in the debate on modal ontology, the familiar distinction between actualism and possibilism should be replaced by a distinction between positions he calls contingentism and necessitism. He has also argued in favor of necessitism, using results on quantified modal logic with plurally interpreted second-order quantifiers showing that necessitists can draw distinctions contingentists cannot draw. Some of these results are similar to well-known results on the relative expressivity of quantified modal logics with so-called inner and outer (...) quantifiers. The present paper deals with these issues in the context of quantified modal logics with generalized quantifiers. Its main aim is to establish two results for such a logic: Firstly, contingentists can draw the distinctions necessitists can draw if and only if the logic with inner quantifiers is at least as expressive as the logic with outer quantifiers, and necessitists can draw the distinctions contingentists can draw if and only if the logic with outer quantifiers is at least as expressive as the logic with inner quantifiers. Secondly, the former two items are the case if and only if all of the generalized quantifiers are first-order definable, and the latter two items are the case if and only if first-order logic with these generalized quantifiers relativizes. (shrink)
Two expressive limitations of an infinitary higher-order modal language interpreted on models for higher-order contingentism – the thesis that it is contingent what propositions, properties and relations there are – are established: First, the inexpressibility of certain relations, which leads to the fact that certain model-theoretic existence conditions for relations cannot equivalently be reformulated in terms of being expressible in such a language. Second, the inexpressibility of certain modalized cardinality claims, which shows that in such a language, higher-order contingentists cannot (...) express what is communicated using various instances of talk of ‘possible things’, such as ‘there are uncountably many possible stars’. (shrink)
A formal result is proved which is used in Juhani Yli-Vakkuri’s ‘Epistemicism and Modality’ to argue that certain two-dimensional possible world models are inadequate for a language with operators for ‘necessarily’, ‘actually’, and ‘definitely’.
The impossibility theorem of Dekel, Lipman and Rustichini has been thought to demonstrate that standard state-space models cannot be used to represent unawareness. We first show that Dekel, Lipman and Rustichini do not establish this claim. We then distinguish three notions of awareness, and argue that although one of them may not be adequately modeled using standard state spaces, there is no reason to think that standard state spaces cannot provide models of the other two notions. In fact, standard space (...) models of these forms of awareness are attractively simple. They allow us to prove completeness and decidability results with ease, to carry over standard techniques from decision theory, and to add propositional quantifiers straightforwardly. (shrink)
In his book The Boundary Stones of Thought, Ian Rumfitt considers five arguments in favour of intuitionistic logic over classical logic. Two of these arguments are based on reflections concerning the meaning of statements in general, due to Michael Dummett and John McDowell. The remaining three are more specific, concerning statements about the infinite and the infinitesimal, statements involving vague terms, and statements about sets.Rumfitt is sympathetic to the premisses of many of these arguments, and takes some of them to (...) be effective challenges to Bivalence, the following principle: Each statement is either true or false.However, he argues that counterexamples to Bivalence do not immediately lead to counterexamples to Excluded Middle, and so do not immediately refute classical logic; here, Excluded Middle is taken to be the following principle: For each statement A, is true.Much... (shrink)
Well-known results due to David Makinson show that there are exactly two Post complete normal modal logics, that in both of them, the modal operator is truth-functional, and that every consistent normal modal logic can be extended to at least one of them. Lloyd Humberstone has recently shown that a natural analog of this result in congruential modal logics fails, by showing that not every congruential modal logic can be extended to one in which the modal operator is truth-functional. As (...) Humberstone notes, the issue of Post completeness in congruential modal logics is not well understood. The present article shows that in contrast to normal modal logics, the extent of the property of Post completeness among congruential modal logics depends on the background set of logics. Some basic results on the corresponding properties of Post completeness are established, in particular that although a congruential modal logic is Post complete among all modal logics if and only if its modality is truth-functional, there are continuum many modal logics Post complete among congruential modal logics. (shrink)
Create an account to enable off-campus access through your institution's proxy server.
Monitor this page
Be alerted of all new items appearing on this page. Choose how you want to monitor it:
Email
RSS feed
About us
Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.