Switch to: References

Add citations

You must login to add citations.
  1. Enumerations of the Kolmogorov Function.Richard Beigel, Harry Buhrman, Peter Fejer, Lance Fortnow, Piotr Grabowski, Luc Longpré, Andrej Muchnik, Frank Stephan & Leen Torenvliet - 2006 - Journal of Symbolic Logic 71 (2):501 - 528.
    A recursive enumerator for a function h is an algorithm f which enumerates for an input x finitely many elements including h(x), f is a k(n)-enumerator if for every input x of length n, h(x) is among the first k(n) elements enumerated by f. If there is a k(n)-enumerator for h then h is called k(n)-enumerable. We also consider enumerators which are only A-recursive for some oracle A. We determine exactly how hard it is to enumerate the Kolmogorov function, which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The complexity of ODDnA.Richard Beigel, William Gasarch, Martin Kummer, Georgia Martin, Timothy McNicholl & Frank Stephan - 2000 - Journal of Symbolic Logic 65 (1):1-18.
    For a fixed set A, the number of queries to A needed in order to decide a set S is a measure of S's complexity. We consider the complexity of certain sets defined in terms of A: $ODD^A_n = \{(x_1, \dots ,x_n): {\tt\#}^A_n(x_1, \dots, x_n) \text{is odd}\}$ and, for m ≥ 2, $\text{MOD}m^A_n = \{(x_1, \dots ,x_n):{\tt\#}^A_n(x_1, \dots ,x_n) \not\equiv 0 (\text{mod} m)\},$ where ${\tt\#}^A_n(x_1, \dots ,x_n) = A(x_1)+\cdots+A(x_n)$ . (We identify A(x) with χ A (x), where χ A is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extremes in the degrees of inferability.Lance Fortnow, William Gasarch, Sanjay Jain, Efim Kinber, Martin Kummer, Stuart Kurtz, Mark Pleszkovich, Theodore Slaman, Robert Solovay & Frank Stephan - 1994 - Annals of Pure and Applied Logic 66 (3):231-276.
    Most theories of learning consider inferring a function f from either observations about f or, questions about f. We consider a scenario whereby the learner observes f and asks queries to some set A. If I is a notion of learning then I[A] is the set of concept classes I-learnable by an inductive inference machine with oracle A. A and B are I-equivalent if I[A] = I[B]. The equivalence classes induced are the degrees of inferability. We prove several results about (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Weak Cardinality Theorems.Till Tantau - 2005 - Journal of Symbolic Logic 70 (3):861 - 878.
    Kummer's Cardinality Theorem states that a language A must be recursive if a Turing machine can exclude for any n words ω1...., ωn one of the n + 1 possibilities for the cardinality of {ω1...., ωn} ∩ A. There was good reason to believe that this theorem is a peculiarity of recursion theory: neither the Cardinality Theorem nor weak forms of it hold for resource-bounded computational models like polynomial time. This belief may be flawed. In this paper it is shown (...)
    Download  
     
    Export citation  
     
    Bookmark