Switch to: References

Add citations

You must login to add citations.
  1. A challenge to the second law of thermodynamics from cognitive science and vice versa.Meir Hemmo & Orly Shenker - 2021 - Synthese 199 (1-2):4897-4927.
    We show that the so-called Multiple-Computations Theorem in cognitive science and philosophy of mind challenges Landauer’s Principle in physics. Since the orthodox wisdom in statistical physics is that Landauer’s Principle is implied by, or is the mechanical equivalent of, the Second Law of thermodynamics, our argument shows that the Multiple-Computations Theorem challenges the universal validity of the Second Law of thermodynamics itself. We construct two examples of computations carried out by one and the same dynamical process with respect to which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Physics and Computation:The Statues of Landauer's Principle.James A. C. Ladyman - 2007 - In S. B. Cooper, B. Löwe & A. Sorbi (eds.), Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497.
    Realism about computation is the view that whether or not a particular physical system is performing a particular computation is at least sometimes a mindindependent feature of reality. The caveat ’at least sometimes’ is necessary here because a realist about computation need not believe that all instances of computation should be realistically construed. The computational theory of mind presupposes realism about computation. If whether or not the human nervous system implements particular computations is not a natural fact about the world (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • There’s Plenty of Boole at the Bottom: A Reversible CA Against Information Entropy.Francesco Berto, Jacopo Tagliabue & Gabriele Rossi - 2016 - Minds and Machines 26 (4):341-357.
    “There’s Plenty of Room at the Bottom”, said the title of Richard Feynman’s 1959 seminal conference at the California Institute of Technology. Fifty years on, nanotechnologies have led computer scientists to pay close attention to the links between physical reality and information processing. Not all the physical requirements of optimal computation are captured by traditional models—one still largely missing is reversibility. The dynamic laws of physics are reversible at microphysical level, distinct initial states of a system leading to distinct final (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The use of the information-theoretic entropy in thermodynamics.James Ladyman, Stuart Presnell & Anthony J. Short - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (2):315-324.
    When considering controversial thermodynamic scenarios such as Maxwell's demon, it is often necessary to consider probabilistic mixtures of states. This raises the question of how, if at all, to assign entropy to them. The information-theoretic entropy is often used in such cases; however, no general proof of the soundness of doing so has been given, and indeed some arguments against doing so have been presented. We offer a general proof of the applicability of the information-theoretic entropy to probabilistic mixtures of (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (2 other versions)A field guide to recent work on the foundations of statistical mechanics.Roman Frigg - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate. pp. 99-196.
    This is an extensive review of recent work on the foundations of statistical mechanics.
    Download  
     
    Export citation  
     
    Bookmark   93 citations  
  • Waiting for Landauer.John D. Norton - 2011 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (3):184-198.
    Landauer's Principle asserts that there is an unavoidable cost in thermodynamic entropy creation when data is erased. It is usually derived from incorrect assumptions, most notably, that erasure must compress the phase space of a memory device or that thermodynamic entropy arises from the probabilistic uncertainty of random data. Recent work seeks to prove Landauer’s Principle without using these assumptions. I show that the processes assumed in the proof, and in the thermodynamics of computation more generally, can be combined to (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Information and physics.Radosław Kycia & Agnieszka Niemczynowicz - 2020 - Philosophical Problems in Science 69:237-252.
    This is an overview article that contains the discussion of the connection between information and physics at the elementary level. We present a derivation of Lindauer’s bound for heat emission during irreversible logical operation. In this computation the Szilard’s version of Maxwell’s demon paradox is used as a model to design thermodynamic implementation of a single bit of computer memory. Lindauer’s principle also motivates the discussion on the practical and emergent nature of the information. Apart from physics, the principle has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Information Processing Artifacts.Neal G. Anderson - 2019 - Minds and Machines 29 (2):193-225.
    What is a computer? What distinguishes computers from other artificial or natural systems with alleged computational capacities? What does use of a physical system for computation entail, and what distinguishes such use from otherwise identical transformation of that same system when it is not so used? This paper addresses such questions through a theory of information processing artifacts, the class of technical artifacts with physical capacities that enable agents to use them as means to their computational ends. Function ascription, use (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Origin of Ambiguity in Efficient Communication.Jordi Fortuny & Bernat Corominas-Murtra - 2013 - Journal of Logic, Language and Information 22 (3):249-267.
    This article studies the emergence of ambiguity in communication through the concept of logical irreversibility and within the framework of Shannon’s information theory. This leads us to a precise and general expression of the intuition behind Zipf’s vocabulary balance in terms of a symmetry equation between the complexities of the coding and the decoding processes that imposes an unavoidable amount of logical uncertainty in natural communication. Accordingly, the emergence of irreversible computations is required if the complexities of the coding and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does a Computer Have an Arrow of Time?Owen J. E. Maroney - 2010 - Foundations of Physics 40 (2):205-238.
    Schulman (Entropy 7(4):221–233, 2005) has argued that Boltzmann’s intuition, that the psychological arrow of time is necessarily aligned with the thermodynamic arrow, is correct. Schulman gives an explicit physical mechanism for this connection, based on the brain being representable as a computer, together with certain thermodynamic properties of computational processes. Hawking (Physical Origins of Time Asymmetry, Cambridge University Press, Cambridge, 1994) presents similar, if briefer, arguments. The purpose of this paper is to critically examine the support for the link between (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Equivalence of von Neumann and Thermodynamic Entropy.Carina E. A. Prunkl - 2020 - Philosophy of Science 87 (2):262-280.
    In 1932, John von Neumann argued for the equivalence of the thermodynamic entropy and −Trρlnρ, since known as the von Neumann entropy. Meir Hemmo and Orly R. Shenker recently challenged this argument by pointing out an alleged discrepancy between the two entropies in the single-particle case, concluding that they must be distinct. In this article, their argument is shown to be problematic as it allows for a violation of the second law of thermodynamics and is based on an incorrect calculation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Arrow of Time in Physics.David Wallace - 2013 - In Adrian Bardon & Heather Dyke (eds.), A Companion to the Philosophy of Time. Malden, MA: Wiley-Blackwell. pp. 262–281.
    Every process studied in any science other than physics defines an arrow of time – to say nothing for the directedness of the processes of causation, inference, memory, control, and counterfactual dependence that occur in everyday life. The discussion in this chapter is confined to the arrow of time as it occurs in physics. The chapter briefly discusses those features of microscopic physics, which seem to conflict with time asymmetry. It explains just how this conflict plays out in the important (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Shakin’ All Over: Proving Landauer’s Principle without Neglect of Fluctuations.Wayne C. Myrvold - 2024 - British Journal for the Philosophy of Science 75 (3):587-616.
    Landauer’s principle is, roughly, the principle that logically irreversible operations cannot be performed without dissipation of energy, with a specified lower bound on that dissipation. Although widely accepted in the literature on the thermodynamics of computation, it has been the subject of considerable dispute in the philosophical literature. Proofs of the principle have been questioned on the grounds of insufficient generality and on the grounds of the assumption, used in the proofs, of the availability of reversible processes at the microscale. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Unpredictable homeodynamic and ambient constraints on irrational decision making of aneural and neural foragers.Kevin B. Clark - 2019 - Behavioral and Brain Sciences 42.
    Download  
     
    Export citation  
     
    Bookmark   4 citations