Switch to: References

Add citations

You must login to add citations.
  1. The Thermodynamic Cost of Choosing.Carlo Rovelli - 2024 - Foundations of Physics 54 (3):1-9.
    Choice can be defined in thermodynamical terms, and shown to have a thermodynamic cost: choosing between a binary alternative at temperature T dissipates an energy $$E\ge kT\ln 2$$.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Philosopher against the Bandwagon: Carnap and the Informationalization of Thermal Physics.Javier Anta - 2022 - Hopos: The Journal of the International Society for the History of Philosophy of Science 12 (1):43-67.
    In this paper I aim to demonstrate that Rudolf Carnap's analysis of the application of information theory within physics, an intellectual-historical precedent of current philosophical criticisms toward this tendency, is justified. First, Carnap and Bar-Hillel (1952) underlined the unjustified ‘semantification’ of Shannon entropy Furthermore, Carnap criticized the ‘physicalization’ of Shannon entropy, but that criticism was not accepted by the physics community of the 1950s (Köhler 2001). Finally, in the posthumously published "Two Essays on Entropy" Carnap (1977) developed a critical assessment (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The physics of implementing logic: Landauer's principle and the multiple-computations theorem.Meir Hemmo & Orly Shenker - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 68:90-105.
    This paper makes a novel linkage between the multiple-computations theorem in philosophy of mind and Landauer’s principle in physics. The multiple-computations theorem implies that certain physical systems implement simultaneously more than one computation. Landauer’s principle implies that the physical implementation of “logically irreversible” functions is accompanied by minimal entropy increase. We show that the multiple-computations theorem is incompatible with, or at least challenges, the universal validity of Landauer’s principle. To this end we provide accounts of both ideas in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Landauer defended: Reply to Norton.James A. C. Ladyman & Katie Robertson - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):263-271.
    Ladyman, Presnell, and Short proposed a model of the implementation of logical operations by physical processes in order to clarify the exact statement of Landauer's Principle, and then offered a new proof of the latter based on the construction of a thermodynamic cycle, arguing that if Landauer's Principle were false it would be possible to harness a machine that violated it to produce a violation of the second law of thermodynamics. In a recent paper in this journal, John Norton directly (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Physics of Forgetting: Thermodynamics of Information at IBM 1959–1982.Aaron Sidney Wright - 2016 - Perspectives on Science 24 (1):112-141.
    . The origin and history of Landauer’s principle is traced through the development of the thermodynamics of computation at IBM from 1959 to 1982. This development was characterized by multiple conceptual shifts: memory came to be seen not as information storage, but as delayed information transmission; information itself was seen not as a disembodied logical entity, but as participating in the physical world; and logical irreversibility was connected with physical, thermodynamic, irreversibility. These conceptual shifts were characterized by an ambivalence opposing (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The End of the Thermodynamics of Computation: A No Go Result.John D. Norton - 2013 - Philosophy of Science 80 (5):1182-1192.
    The thermodynamics of computation assumes that computational processes at the molecular level can be brought arbitrarily close to thermodynamic reversibility and that thermodynamic entropy creation is unavoidable only in data erasure or the merging of computational paths, in accord with Landauer’s principle. The no-go result shows that fluctuations preclude completion of thermodynamically reversible processes. Completion can be achieved only by irreversible processes that create thermodynamic entropy in excess of the Landauer limit.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Infinite Idealizations.John D. Norton - 2012 - Vienna Circle Institute Yearbook 17:197-210.
    1. Approximations of arbitrarily large but finite systems are often mistaken for infinite idealizations in statistical and thermal physics. The problem is illustrated by thermodynamically reversible processes. They are approximations of processes requiring arbitrarily long, but finite times to complete, not processes requiring an actual infinity of time.2. The present debate over whether phase transitions comprise a failure of reduction is confounded by a confusion of two senses of “level”: the molecular versus the thermodynamic level and the few component versus (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Brownian Computation Is Thermodynamically Irreversible.John D. Norton - 2013 - Foundations of Physics 43 (11):1-27.
    Brownian computers are supposed to illustrate how logically reversible mathematical operations can be computed by physical processes that are thermodynamically reversible or nearly so. In fact, they are thermodynamically irreversible processes that are the analog of an uncontrolled expansion of a gas into a vacuum.
    Download  
     
    Export citation  
     
    Bookmark  
  • Author's Reply to Landauer Defended.John D. Norton - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (3):272-272.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Shakin’ All Over: Proving Landauer’s Principle without Neglect of Fluctuations.Wayne C. Myrvold - 2024 - British Journal for the Philosophy of Science 75 (3):587-616.
    Landauer’s principle is, roughly, the principle that logically irreversible operations cannot be performed without dissipation of energy, with a specified lower bound on that dissipation. Although widely accepted in the literature on the thermodynamics of computation, it has been the subject of considerable dispute in the philosophical literature. Proofs of the principle have been questioned on the grounds of insufficient generality and on the grounds of the assumption, used in the proofs, of the availability of reversible processes at the microscale. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A challenge to the second law of thermodynamics from cognitive science and vice versa.Meir Hemmo & Orly Shenker - 2021 - Synthese 199 (1-2):4897-4927.
    We show that the so-called Multiple-Computations Theorem in cognitive science and philosophy of mind challenges Landauer’s Principle in physics. Since the orthodox wisdom in statistical physics is that Landauer’s Principle is implied by, or is the mechanical equivalent of, the Second Law of thermodynamics, our argument shows that the Multiple-Computations Theorem challenges the universal validity of the Second Law of thermodynamics itself. We construct two examples of computations carried out by one and the same dynamical process with respect to which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Thermodynamic Cost of Fast Thought.Alexandre de Castro - 2013 - Minds and Machines 23 (4):473-487.
    After more than 60 years, Shannon’s research continues to raise fundamental questions, such as the one formulated by R. Luce, which is still unanswered: “Why is information theory not very applicable to psychological problems, despite apparent similarities of concepts?” On this topic, S. Pinker, one of the foremost defenders of the widespread computational theory of mind, has argued that thought is simply a type of computation, and that the gap between human cognition and computational models may be illusory. In this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The peculiar status of the second law of thermodynamics and the quest for its violation.Germano D'Abramo - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (4):226-235.
    Even though the second law of thermodynamics holds the supreme position among the laws of nature, as stated by many distinguished scientists, notably Eddington and Einstein, its position appears to be also quite peculiar. Given the atomic nature of matter, whose behavior is well described by statistical physics, the second law could not hold unconditionally, but only statistically. It is not an absolute law. As a result of this, in the present paper we try to argue that we have not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Are black holes about information?Christian Wuthrich - unknown
    Information theory presupposes the notion of an epistemic agent, such as a scientist or an idealized human. Despite that, information theory is increasingly invoked by physicists concerned with fundamental physics, physics at very high energies, or generally with the physics of situations in which even idealized epistemic agents cannot exist. In this paper, I shall try to determine the extent to which the application of information theory in those contexts is legitimate. I will illustrate my considerations using the case of (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Thermodynamically Reversible Processes in Statistical Physics.John D. Norton - unknown
    Equilibrium states are used as limit states to define thermodynamically reversible processes. When these processes are implemented in statistical physics, these limit states become unstable and can change with time, due to thermal fluctuations. For macroscopic systems, the changes are insignificant on ordinary time scales and what little there is can be suppressed by macroscopically negligible, entropy-creating dissipation. For systems of molecular sizes, the changes are large on short time scales and can only sometimes be suppressed with significant entropy-creating dissipation. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Psa 2012.-Preprint Volume- - unknown
    These preprints were automatically compiled into a PDF from the collection of papers deposited in PhilSci-Archive in conjunction with the PSA 2012.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How is there a Physics of Information? On characterising physical evolution as information processing.O. J. E. Maroney & C. G. Timpson - unknown
    We have a conundrum. The physical basis of information is clearly a highly active research area. Yet the power of information theory comes precisely from separating it from the detailed problems of building physical systems to perform information processing tasks. Developments in quantum information over the last two decades seem to have undermined this separation, leading to suggestions that information is itself a physical entity and must be part of our physical theories, with resource-cost implications. We will consider a variety (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Maxwell's Demon Does Not Compute.John D. Norton - 2018 - In Michael E. Cuffaro & Samuel C. Fletcher (eds.), Physical Perspectives on Computation, Computational Perspectives on Physics. Cambridge University Press.
    Must a Maxwell demon must fail to reverse the second law of thermodynamics? Standard attempts to show it must fail make use of notions of information and computation. None of these attempts have succeeded. Worse they have distracted both supporters and opponents of these attempts from a much simpler demonstration of the necessary failure of a Maxwell's demon that employs no notions of information or computation. It requires only Liouville's theorem and its quantum analog.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Worst Thought Experiment.John D. Norton - 2017 - In Michael T. Stuart, Yiftach Fehige & James Robert Brown (eds.), The Routledge Companion to Thought Experiments. London: Routledge.
    In Leo Szilard’s 1929 thought experiment, a Maxwell demon manipulates a one-molecule gas to reverse the second law of thermodynamics. The demon must fail, Szilard argued, since there is hidden entropy creation in the demon’s collecting of information. This thought experiment is an inconsistent muddle of improper idealizations. It diverted an already successful literature of exorcism into degenerating speculations about about a connection between thermodynamic entropy and information. These confusions persist today in a voluminous literature. Narrative conventions in a thought (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations