Switch to: References

Add citations

You must login to add citations.
  1. Simultaneous stationary reflection and square sequences.Yair Hayut & Chris Lambie-Hanson - 2017 - Journal of Mathematical Logic 17 (2):1750010.
    We investigate the relationship between weak square principles and simultaneous reflection of stationary sets.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • A microscopic approach to Souslin-tree construction, Part II.Ari Meir Brodsky & Assaf Rinot - 2021 - Annals of Pure and Applied Logic 172 (5):102904.
    In Part I of this series, we presented the microscopic approach to Souslin-tree constructions, and argued that all known ⋄-based constructions of Souslin trees with various additional properties may be rendered as applications of our approach. In this paper, we show that constructions following the same approach may be carried out even in the absence of ⋄. In particular, we obtain a new weak sufficient condition for the existence of Souslin trees at the level of a strongly inaccessible cardinal. We (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Diagonal reflections on squares.Gunter Fuchs - 2019 - Archive for Mathematical Logic 58 (1-2):1-26.
    The effects of the forcing axioms \, \ and \ on the failure of weak threaded square principles of the form \\) are analyzed. To this end, a diagonal reflection principle, \, and it implies the failure of \\) if \. It is also shown that this result is sharp. It is noted that \/\ imply the failure of \\), for every regular \, and that this result is sharp as well.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The tree property at the successor of a singular limit of measurable cardinals.Mohammad Golshani - 2018 - Archive for Mathematical Logic 57 (1-2):3-25.
    Assume \ is a singular limit of \ supercompact cardinals, where \ is a limit ordinal. We present two methods for arranging the tree property to hold at \ while making \ the successor of the limit of the first \ measurable cardinals. The first method is then used to get, from the same assumptions, the tree property at \ with the failure of SCH at \. This extends results of Neeman and Sinapova. The second method is also used to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Knaster and friends II: The C-sequence number.Chris Lambie-Hanson & Assaf Rinot - 2020 - Journal of Mathematical Logic 21 (1):2150002.
    Motivated by a characterization of weakly compact cardinals due to Todorcevic, we introduce a new cardinal characteristic, the C-sequence number, which can be seen as a measure of the compactness of a regular uncountable cardinal. We prove a number of ZFC and independence results about the C-sequence number and its relationship with large cardinals, stationary reflection, and square principles. We then introduce and study the more general C-sequence spectrum and uncover some tight connections between the C-sequence spectrum and the strong (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Magidor–Malitz reflection.Yair Hayut - 2017 - Archive for Mathematical Logic 56 (3-4):253-272.
    In this paper we investigate the consistency and consequences of the downward Löwenheim–Skolem–Tarski theorem for extension of the first order logic by the Magidor–Malitz quantifier. We derive some combinatorial results and improve the known upper bound for the consistency of Chang’s conjecture at successor of singular cardinals.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Knaster and Friends III: Subadditive Colorings.Chris Lambie-Hanson & Assaf Rinot - 2023 - Journal of Symbolic Logic 88 (3):1230-1280.
    We continue our study of strongly unbounded colorings, this time focusing on subadditive maps. In Part I of this series, we showed that, for many pairs of infinite cardinals $\theta < \kappa $, the existence of a strongly unbounded coloring $c:[\kappa ]^2 \rightarrow \theta $ is a theorem of $\textsf{ZFC}$. Adding the requirement of subadditivity to a strongly unbounded coloring is a significant strengthening, though, and here we see that in many cases the existence of a subadditive strongly unbounded coloring (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Closure properties of measurable ultrapowers.Philipp Lücke & Sandra Müller - 2021 - Journal of Symbolic Logic 86 (2):762-784.
    We study closure properties of measurable ultrapowers with respect to Hamkin's notion of freshness and show that the extent of these properties highly depends on the combinatorial properties of the underlying model of set theory. In one direction, a result of Sakai shows that, by collapsing a strongly compact cardinal to become the double successor of a measurable cardinal, it is possible to obtain a model of set theory in which such ultrapowers possess the strongest possible closure properties. In the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Specialising Trees with Small Approximations I.Rahman Mohammadpour - forthcoming - Journal of Symbolic Logic:1-24.
    Assuming $\mathrm{PFA}$, we shall use internally club $\omega _1$ -guessing models as side conditions to show that for every tree T of height $\omega _2$ without cofinal branches, there is a proper and $\aleph _2$ -preserving forcing notion with finite conditions which specialises T. Moreover, the forcing has the $\omega _1$ -approximation property.
    Download  
     
    Export citation  
     
    Bookmark