Switch to: References

Add citations

You must login to add citations.
  1. Thought Experiments and The Pragmatic Nature of Explanation.Panagiotis Karadimas - 2024 - Foundations of Science 29 (2):257-280.
    Different why-questions emerge under different contexts and require different information in order to be addressed. Hence a relevance relation can hardly be invariant across contexts. However, what is indeed common under any possible context is that all explananda require scientific information in order to be explained. So no scientific information is in principle explanatorily irrelevant, it only becomes so under certain contexts. In view of this, scientific thought experiments can offer explanations, should we analyze their representational strategies. Their representations involve (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Science, institutions, and values.C. Mantzavinos - 2020 - European Journal of Philosophy 29 (2):379-392.
    This paper articulates and defends three interconnected claims: first, that the debate on the role of values for science misses a crucial dimension, the institutional one; second, that institutions occupy the intermediate level between scientific activities and values and that they are to be systematically integrated into the analysis; third, that the appraisal of the institutions of science with respect to values should be undertaken within the premises of a comparative approach rather than an ideal approach. Hence, I defend the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Computer Simulations in Science and Engineering. Concept, Practices, Perspectives.Juan Manuel Durán - 2018 - Springer.
    This book addresses key conceptual issues relating to the modern scientific and engineering use of computer simulations. It analyses a broad set of questions, from the nature of computer simulations to their epistemological power, including the many scientific, social and ethics implications of using computer simulations. The book is written in an easily accessible narrative, one that weaves together philosophical questions and scientific technicalities. It will thus appeal equally to all academic scientists, engineers, and researchers in industry interested in questions (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Aesthetics of the Scientific Image.Clive Cazeaux - 2015 - Journal of Aesthetics and Phenomenology 2 (2):187-209.
    Images in science are often beautiful but their beauty cannot be explained using traditional aesthetic theories. Available theories either rely upon concepts antithetical to science, e.g. regularity as an index of God’s design, or they omit concepts intrinsic to scientific imaging, e.g. the image is taken as a representation of “beautiful nature.” I argue that the scientific image is not a representation but a construction: a series of mutually defining intra-actions, where “intra-action” signifies that the object depicted cannot be extricated (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Models, models, models: a deflationary view.Jay Odenbaugh - 2018 - Synthese 198 (Suppl 21):1-16.
    In this essay, I first consider a popular view of models and modeling, the similarity view. Second, I contend that arguments for it fail and it suffers from what I call “Hughes’ worry.” Third, I offer a deflationary approach to models and modeling that avoids Hughes’ worry and shows how scientific representations are of apiece with other types of representations. Finally, I consider an objection that the similarity view can deal with approximations better than the deflationary view and show that (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Visual Metaphors in the Sciences: The Case of Epigenetic Landscape Images.Jan Baedke & Tobias Schöttler - 2016 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie:1-22.
    Recent philosophical analyses of the epistemic dimension of images in the sciences show a certain trend in acknowledging potential roles of these images beyond their merely decorative or pedagogical functions. We argue, however, that this new debate has yet paid little attention to a special type of pictures, we call ‘visual metaphor’, and its versatile heuristic potential in organizing data, supporting communication, and guiding research, modeling, and theory formation. Based on a case study of Conrad Hal Waddington’s epigenetic landscape images (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Scientific Images as Circulating Ideas: An Application of Ludwik Fleck’s Theory of Thought Styles.Nicola Mößner - 2016 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 47 (2):307-329.
    Without doubt, there is a great diversity of scientific images both with regard to their appearances and their functions. Diagrams, photographs, drawings, etc. serve as evidence in publications, as eye-catchers in presentations, as surrogates for the research object in scientific reasoning. This fact has been highlighted by Stephen M. Downes who takes this diversity as a reason to argue against a unifying representation-based account of how visualisations play their epistemic role in science. In the following paper, I will suggest an (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Field Guide to Mechanisms: Part I.Holly Andersen - 2014 - Philosophy Compass 9 (4):274-283.
    In this field guide, I distinguish five separate senses with which the term ‘mechanism’ is used in contemporary philosophy of science. Many of these senses have overlapping areas of application but involve distinct philosophical claims and characterize the target mechanisms in relevantly different ways. This field guide will clarify the key features of each sense and introduce some main debates, distinguishing those that transpire within a given sense from those that are best understood as concerning distinct senses. The ‘new mechanisms’ (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • What Is the Use of Diagrams in Theoretical Modeling?Anouk Barberousse - 2013 - Science in Context 26 (2):345-362.
    ArgumentThe use of diagrams is pervasive in theoretical physics. Together with mathematical formulae and natural language, diagrams play a major role in theoretical modeling. They enrich the expressive power of physicists and help them to explore new theoretical ideas. Diagrams are not only heuristic or pedagogical tools, but they are also tools that enable developing the content of models into novel implications.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Model for the Division of Semiotic Labor in Scientific Argument: The Interaction of Words and Images.Alan G. Gross - 2011 - Science in Context 24 (4):517-544.
    ArgumentA growing cross-disciplinary literature has acknowledged the importance of verbal-visual interaction in the creation and communication of scientific texts. I contend that the proper understanding of these texts must flow from a hermeneutic model that takes verbal-visual interaction seriously, one that is firmly grounded in cognitive constraints and affordances. The model I propose has two modules, one for perception, derived from Gestalt psychology, the other for cognition, derived from Peirce's semiotics. I apply this model to an important but largely neglected (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Structure of Scientific Theories, Explanation, and Unification. A Causal–Structural Account.Bert Leuridan - 2014 - British Journal for the Philosophy of Science 65 (4):717-771.
    What are scientific theories and how should they be represented? In this article, I propose a causal–structural account, according to which scientific theories are to be represented as sets of interrelated causal and credal nets. In contrast with other accounts of scientific theories (such as Sneedian structuralism, Kitcher’s unificationist view, and Darden’s theory of theoretical components), this leaves room for causality to play a substantial role. As a result, an interesting account of explanation is provided, which sheds light on explanatory (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Photographic Evidence and the Problem of Theory-Ladenness.Nicola Mößner - 2013 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 44 (1):111–125.
    Scientists use visualisations of different kinds in a variety of ways in their scientific work. In the following article, we will take a closer look at the use of photographic pictures as scientific evidence. In accordance with Patrick Maynard’s thesis, photography will be regarded as a family of technologies serving different purposes in divergent contexts. One of these is its ability to detect certain phenomena. Nonetheless, with regard to the philosophical thesis of theory-ladenness of observation, we encounter certain reservations concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)The means-end account of scientific, representational actions.Brandon Boesch - 2019 - Synthese 196 (6):2305-2322.
    While many recent accounts of scientific representation have given a central role to the agency and intentions of scientists in explaining representation, they have left these agential concepts unanalyzed. An account of scientific, representational actions will be a useful piece in offering a more complete account of the practice of representation in science. Drawing on an Anscombean approach to the nature of intentional actions, the Means-End Account of Scientific, Representational Actions describes three features of scientific, representational actions: (I) the final (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)The means-end account of scientific, representational actions.Brandon Boesch - 2017 - Synthese:1-18.
    While many recent accounts of scientific representation have given a central role to the agency and intentions of scientists in explaining representation, they have left these agential concepts unanalyzed. An account of scientific, representational actions will be a useful piece in offering a more complete account of the practice of representation in science. Drawing on an Anscombean approach to the nature of intentional actions, the Means-End Account of Scientific, Representational Actions describes three features of scientific, representational actions: the final description (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Visual Information and Scientific Understanding.Nicola Mößner - 2015 - Axiomathes 25 (2):167-179.
    Without doubt, there is a widespread usage of visualisations in science. However, what exactly the _epistemic status_ of these visual representations in science may be remains an open question. In the following, I will argue that at least some scientific visualisations are indispensible for our cognitive processes. My thesis will be that, with regard to the activity of _learning_, visual representations are of relevance in the sense of contributing to the aim of _scientific_ _understanding_. Taking into account that understanding can (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Models, Pictures, and Unified Accounts of Representation: Lessons from Aesthetics for Philosophy of Science.Stephen M. Downes - 2009 - Perspectives on Science 17 (4):417-428.
    Several prominent philosophers of science, most notably Ron Giere, propose that scientific theories are collections of models and that models represent the objects of scientific study. Some, including Giere, argue that models represent in the same way that pictures represent. Aestheticians have brought the picturing relation under intense scrutiny and presented important arguments against the tenability of particular accounts of picturing. Many of these arguments from aesthetics can be used against accounts of representation in philosophy of science. I rely on (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Image Interpretation: Bridging the Gap from Mechanically Produced Image to Representation.Laura Perini - 2012 - International Studies in the Philosophy of Science 26 (2):153-170.
    There is currently a gap in our understanding of how figures produced by mechanical imaging techniques play evidential roles: several studies based on close examination of scientific practice show that imaging techniques do not yield data whose significance can simply be read off the image. If image-making technology is not a simple matter of nature re-presenting itself to us in a legible way, just how do the images produced provide support for scientific claims? In this article I will first show (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Visual Metaphors in the Sciences: The Case of Epigenetic Landscape Images.Jan Baedke & Tobias Schöttler - 2017 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 48 (2):173-194.
    Recent philosophical analyses of the epistemic dimension of images in the sciences show a certain trend in acknowledging potential roles of these images beyond their merely decorative or pedagogical functions. We argue, however, that this new debate has yet paid little attention to a special type of pictures, we call ‘visual metaphor’, and its versatile heuristic potential in organizing data, supporting communication, and guiding research, modeling, and theory formation. Based on a case study of Conrad Hal Waddington’s epigenetic landscape images (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Spot the difference: Causal contrasts in scientific diagrams.Raphael Scholl - 2016 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 60:77-87.
    An important function of scientific diagrams is to identify causal relationships. This commonly relies on contrasts that highlight the effects of specific difference-makers. However, causal contrast diagrams are not an obvious and easy to recognize category because they appear in many guises. In this paper, four case studies are presented to examine how causal contrast diagrams appear in a wide range of scientific reports, from experimental to observational and even purely theoretical studies. It is shown that causal contrasts can be (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modelling mechanisms with causal cycles.Brendan Clarke, Bert Leuridan & Jon Williamson - 2014 - Synthese 191 (8):1-31.
    Mechanistic philosophy of science views a large part of scientific activity as engaged in modelling mechanisms. While science textbooks tend to offer qualitative models of mechanisms, there is increasing demand for models from which one can draw quantitative predictions and explanations. Casini et al. (Theoria 26(1):5–33, 2011) put forward the Recursive Bayesian Networks (RBN) formalism as well suited to this end. The RBN formalism is an extension of the standard Bayesian net formalism, an extension that allows for modelling the hierarchical (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Bild in der Wissenschaft.Nicola Mößner - 2016 - Image 23 (1):65-86.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Representing in the Student Laboratory.Brandon Boesch - 2018 - Transversal: International Journal for the Historiography of Science 5:34-48.
    In this essay, I will expand the philosophical discussion about the representational practice in science to examine its role in science education through four case studies. The cases are of what I call ‘educational laboratory experiments’, performative models used representationally by students to come to a better understanding of theoretical knowledge of a scientific discipline. The studies help to demonstrate some idiosyncratic features of representational practices in science education, most importantly a lack of novelty and discovery built into the ELEs (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Fuzzy-set representation and processing of fuzzy images: non-linguistic vagueness as representation, approximation and scientific practice.Jordi Cat - 2015 - Archives for the Philosophy and History of Soft Computing 2015 (1).
    This is the first part of a two-part paper in which I conclude the process, initiated elsewhere, of tracking objective conditions of vagueness of representation from language to pictures, from philosophy to imaging science, from vagueness to approximation, from representation to reasoning, with a focus on the application of fuzzy set theory and its challenges.
    Download  
     
    Export citation  
     
    Bookmark