Switch to: References

Add citations

You must login to add citations.
  1. Does Predictive Sentencing Make Sense?Clinton Castro, Alan Rubel & Lindsey Schwartz - forthcoming - Inquiry: An Interdisciplinary Journal of Philosophy.
    This paper examines the practice of using predictive systems to lengthen the prison sentences of convicted persons when the systems forecast a higher likelihood of re-offense or re-arrest. There has been much critical discussion of technologies used for sentencing, including questions of bias and opacity. However, there hasn’t been a discussion of whether this use of predictive systems makes sense in the first place. We argue that it does not by showing that there is no plausible theory of punishment that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Advantages of Distinguishing Between Predictive and Allocative Fairness in Algorithmic Decision-Making.Fabian Beigang - 2022 - Minds and Machines 32 (4):655-682.
    The problem of algorithmic fairness is typically framed as the problem of finding a unique formal criterion that guarantees that a given algorithmic decision-making procedure is morally permissible. In this paper, I argue that this is conceptually misguided and that we should replace the problem with two sub-problems. If we examine how most state-of-the-art machine learning systems work, we notice that there are two distinct stages in the decision-making process. First, a prediction of a relevant property is made. Secondly, a (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Beyond bias and discrimination: redefining the AI ethics principle of fairness in healthcare machine-learning algorithms.Benedetta Giovanola & Simona Tiribelli - 2023 - AI and Society 38 (2):549-563.
    The increasing implementation of and reliance on machine-learning (ML) algorithms to perform tasks, deliver services and make decisions in health and healthcare have made the need for fairness in ML, and more specifically in healthcare ML algorithms (HMLA), a very important and urgent task. However, while the debate on fairness in the ethics of artificial intelligence (AI) and in HMLA has grown significantly over the last decade, the very concept of fairness as an ethical value has not yet been sufficiently (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Policy advice and best practices on bias and fairness in AI.Jose M. Alvarez, Alejandra Bringas Colmenarejo, Alaa Elobaid, Simone Fabbrizzi, Miriam Fahimi, Antonio Ferrara, Siamak Ghodsi, Carlos Mougan, Ioanna Papageorgiou, Paula Reyero, Mayra Russo, Kristen M. Scott, Laura State, Xuan Zhao & Salvatore Ruggieri - 2024 - Ethics and Information Technology 26 (2):1-26.
    The literature addressing bias and fairness in AI models (fair-AI) is growing at a fast pace, making it difficult for novel researchers and practitioners to have a bird’s-eye view picture of the field. In particular, many policy initiatives, standards, and best practices in fair-AI have been proposed for setting principles, procedures, and knowledge bases to guide and operationalize the management of bias and fairness. The first objective of this paper is to concisely survey the state-of-the-art of fair-AI methods and resources, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: Digital Technologies and Human Decision-Making.Sofia Bonicalzi, Mario De Caro & Benedetta Giovanola - 2023 - Topoi 42 (3):793-797.
    Download  
     
    Export citation  
     
    Bookmark  
  • Using (Un)Fair Algorithms in an Unjust World.Kasper Lippert-Rasmussen - 2022 - Res Publica 29 (2):283-302.
    Algorithm-assisted decision procedures—including some of the most high-profile ones, such as COMPAS—have been described as unfair because they compound injustice. The complaint is that in such procedures a decision disadvantaging members of a certain group is based on information reflecting the fact that the members of the group have already been unjustly disadvantaged. I assess this reasoning. First, I distinguish the anti-compounding duty from a related but distinct duty—the proportionality duty—from which at least some of the intuitive appeal of the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Weapons of moral construction? On the value of fairness in algorithmic decision-making.Simona Tiribelli & Benedetta Giovanola - 2022 - Ethics and Information Technology 24 (1):1-13.
    Fairness is one of the most prominent values in the Ethics and Artificial Intelligence (AI) debate and, specifically, in the discussion on algorithmic decision-making (ADM). However, while the need for fairness in ADM is widely acknowledged, the very concept of fairness has not been sufficiently explored so far. Our paper aims to fill this gap and claims that an ethically informed re-definition of fairness is needed to adequately investigate fairness in ADM. To achieve our goal, after an introductory section aimed (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations