Switch to: References

Add citations

You must login to add citations.
  1. Counterfactuals as modal conditionals, and their probability.Giuliano Rosella, Tommaso Flaminio & Stefano Bonzio - 2023 - Artificial Intelligence 323 (C):103970.
    In this paper we propose a semantic analysis of Lewis' counterfactuals. By exploiting the structural properties of the recently introduced boolean algebras of conditionals, we show that counterfactuals can be expressed as formal combinations of a conditional object and a normal necessity modal operator. Specifically, we introduce a class of algebras that serve as modal expansions of boolean algebras of conditionals, together with their dual relational structures. Moreover, we show that Lewis' semantics based on sphere models can be reconstructed in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An Algebraic Study of Tense Operators on Nelson Algebras.A. V. Figallo, G. Pelaitay & J. Sarmiento - 2020 - Studia Logica 109 (2):285-312.
    Ewald considered tense operators G, H, F and P on intuitionistic propositional calculus and constructed an intuitionistic tense logic system called IKt. In 2014, Figallo and Pelaitay introduced the variety IKt of IKt-algebras and proved that the IKt system has IKt-algebras as algebraic counterpart. In this paper, we introduce and study the variety of tense Nelson algebras. First, we give some examples and we prove some properties. Next, we associate an IKt-algebra to each tense Nelson algebras. This result allowed us (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modal logic with non-deterministic semantics: Part I—Propositional case.Marcelo E. Coniglio, Luis Fariñas del Cerro & Newton Peron - 2020 - Logic Journal of the IGPL 28 (3):281-315.
    Dugundji proved in 1940 that most parts of standard modal systems cannot be characterized by a single finite deterministic matrix. In the eighties, Ivlev proposed a semantics of four-valued non-deterministic matrices (which he called quasi-matrices), in order to characterize a hierarchy of weak modal logics without the necessitation rule. In a previous paper, we extended some systems of Ivlev’s hierarchy, also proposing weaker six-valued systems in which the (T) axiom was replaced by the deontic (D) axiom. In this paper, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frontiers of Conditional Logic.Yale Weiss - 2019 - Dissertation, The Graduate Center, City University of New York
    Conditional logics were originally developed for the purpose of modeling intuitively correct modes of reasoning involving conditional—especially counterfactual—expressions in natural language. While the debate over the logic of conditionals is as old as propositional logic, it was the development of worlds semantics for modal logic in the past century that catalyzed the rapid maturation of the field. Moreover, like modal logic, conditional logic has subsequently found a wide array of uses, from the traditional (e.g. counterfactuals) to the exotic (e.g. conditional (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Polynomial ring calculus for modal logics: A new semantics and proof method for modalities: Polynomial ring calculus for modal logics.Juan C. Agudelo - 2011 - Review of Symbolic Logic 4 (1):150-170.
    A new proof style adequate for modal logics is defined from the polynomial ring calculus. The new semantics not only expresses truth conditions of modal formulas by means of polynomials, but also permits to perform deductions through polynomial handling. This paper also investigates relationships among the PRC here defined, the algebraic semantics for modal logics, equational logics, the Dijkstra???Scholten equational-proof style, and rewriting systems. The method proposed is throughly exemplified for S 5, and can be easily extended to other modal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Philosophy of Quantum Probability - An empiricist study of its formalism and logic.Ronnie Hermens - unknown
    The use of probability theory is widespread in our daily life as well as in scientific theories. In virtually all cases, calculations can be carried out within the framework of classical probability theory. A special exception is given by quantum mechanics, which gives rise to a new probability theory: quantum probability theory. This dissertation deals with the question of how this formalism can be understood from a philosophical and physical perspective. The dissertation is divided into three parts. In the first (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quine and Quantified Modal Logic – Against the Received View.Adam Tamas Tuboly - 2015 - Organon F: Medzinárodný Časopis Pre Analytickú Filozofiu 22 (4):518-545.
    The textbook-like history of analytic philosophy is a history of myths, re-ceived views and dogmas. Though mainly the last few years have witnessed a huge amount of historical work that aimed to reconsider our narratives of the history of ana-lytic philosophy there is still a lot to do. The present study is meant to present such a micro story which is still quite untouched by historians. According to the received view Kripke has defeated all the arguments of Quine against quantified (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A generalisation of the concept of a relational model for modal logic.David Makinson - 1970 - Theoria 36 (3):331-335.
    Generalises the concept of a relational model for modal logic, due to Kripke, so as to obtain a closer correspondence between relational and algebraic models. The generalisation obtained is essentially equivalent to the notion of a "first-order" model that was defined independently by S.K.Thomason.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On modal logic with an intuitionistic base.Gisèle Fischer Servi - 1977 - Studia Logica 36:141.
    A definition of the concept of "Intuitionist Modal Analogue" is presented and motivated through the existence of a theorem preserving translation from MIPC to a bimodal S₄-S₅ calculus.
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Positive modal logic.J. Michael Dunn - 1995 - Studia Logica 55 (2):301 - 317.
    We give a set of postulates for the minimal normal modal logicK + without negation or any kind of implication. The connectives are simply , , , . The postulates (and theorems) are all deducibility statements . The only postulates that might not be obvious are.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Is Classical Mathematics Appropriate for Theory of Computation?Farzad Didehvar - manuscript
    Throughout this paper, we are trying to show how and why our Mathematical frame-work seems inappropriate to solve problems in Theory of Computation. More exactly, the concept of turning back in time in paradoxes causes inconsistency in modeling of the concept of Time in some semantic situations. As we see in the first chapter, by introducing a version of “Unexpected Hanging Paradox”,first we attempt to open a new explanation for some paradoxes. In the second step, by applying this paradox, it (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Modern Origins of Modal Logic.Roberta Ballarin - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An Interpretation of Łukasiewicz’s 4-Valued Modal Logic.José M. Méndez, Gemma Robles & Francisco Salto - 2016 - Journal of Philosophical Logic 45 (1):73-87.
    A simple, bivalent semantics is defined for Łukasiewicz’s 4-valued modal logic Łm4. It is shown that according to this semantics, the essential presupposition underlying Łm4 is the following: A is a theorem iff A is true conforming to both the reductionist and possibilist theses defined as follows: rt: the value of modal formulas is equivalent to the value of their respective argument iff A is true, etc.); pt: everything is possible. This presupposition highlights and explains all oddities arising in Łm4.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • C. I. Lewis’s Intensional Semantics.Edwin Mares - 2023 - Notre Dame Journal of Formal Logic 64 (3):329-352.
    This paper begins with a discussion of C. I. Lewis’s theory of meaning in his book, An Analysis of Knowledge and Valuation (1946) and his pragmatic theory of analyticity and necessity. I bring this theories together with some remarks that he makes in an appendix to the second edition of Symbolic Logic to construct an algebraic semantics for his logics S2 and S3. These logics and their semantics are compared and evaluated with regard to how well they implement Lewis’s theories (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Proof Methods for Modal and Intuitionistic Logics.Melvin Chris Fitting - 1983 - Dordrecht and Boston: Reidel.
    "Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A Categorical Equivalence for Tense Nelson Algebras.Aldo V. Figallo, Jonathan Sermento & Gustavo Pelaitay - 2021 - Studia Logica 110 (1):241-263.
    In this paper we present a category equivalent to that of tense Nelson algebras. The objects in this new category are pairs consisting of an IKt-algebra and a Boolean IKt-congruence and the morphisms are a special kind of IKt-homomorphisms. This categorical equivalence permits understanding tense Nelson algebras in terms of the better–known IKt-algebras.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Squares in Fork Arrow Logic.Renata P. de Freitas, Jorge P. Viana, Mario R. F. Benevides, Sheila R. M. Veloso & Paulo A. S. Veloso - 2003 - Journal of Philosophical Logic 32 (4):343-355.
    In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema's non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Topology and duality in modal logic.Giovanni Sambin & Virginia Vaccaro - 1988 - Annals of Pure and Applied Logic 37 (3):249-296.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Mathematical modal logic: A view of its evolution.Robert Goldblatt - 2003 - Journal of Applied Logic 1 (5-6):309-392.
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Validity and Necessity.Roberta Ballarin - 2005 - Journal of Philosophical Logic 34 (3):275-303.
    In this paper I argue against the commonly received view that Kripke's formal Possible World Semantics (PWS) reflects the adoption of a metaphysical interpretation of the modal operators. I consider in detail Kripke's three main innovations vis-à-vis Carnap's PWS: a new view of the worlds, variable domains of quantification, and the adoption of a notion of universal validity. I argue that all these changes are driven by the natural technical development of the model theory and its related notion of validity: (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Varieties of complex algebras.Robert Goldblatt - 1989 - Annals of Pure and Applied Logic 44 (3):173-242.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Forcing operators on MTL-algebras.George Georgescu & Denisa Diaconescu - 2011 - Mathematical Logic Quarterly 57 (1):47-64.
    We study the forcing operators on MTL-algebras, an algebraic notion inspired by the Kripke semantics of the monoidal t -norm based logic . At logical level, they provide the notion of the forcing value of an MTL-formula. We characterize the forcing operators in terms of some MTL-algebras morphisms. From this result we derive the equality of the forcing value and the truth value of an MTL-formula.
    Download  
     
    Export citation  
     
    Bookmark  
  • Leo Esakia on Duality in Modal and Intuitionistic Logics.Guram Bezhanishvili (ed.) - 2014 - Dordrecht, Netherland: Springer.
    This volume is dedicated to Leo Esakia's contributions to the theory of modal and intuitionistic systems. Consisting of 10 chapters, written by leading experts, this volume discusses Esakia’s original contributions and consequent developments that have helped to shape duality theory for modal and intuitionistic logics and to utilize it to obtain some major results in the area. Beginning with a chapter which explores Esakia duality for S4-algebras, the volume goes on to explore Esakia duality for Heyting algebras and its generalizations (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An algebraic study of well-foundedness.Robert Goldblatt - 1985 - Studia Logica 44 (4):423 - 437.
    A foundational algebra ( , f, ) consists of a hemimorphism f on a Boolean algebra with a greatest solution to the condition f(x). The quasi-variety of foundational algebras has a decidable equational theory, and generates the same variety as the complex algebras of structures (X, R), where f is given by R-images and is the non-wellfounded part of binary relation R.The corresponding results hold for algebras satisfying =0, with respect to complex algebras of wellfounded binary relations. These algebras, however, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)An approach to tense logic.R. A. Bull - 1970 - Theoria 36 (3):282-300.
    The author's motivation for constructing the calculi of this paper\nis so that time and tense can be "discussed together in the same\nlanguage" (p. 282). Two types of enriched propositional caluli for\ntense logic are considered, both containing ordinary propositional\nvariables for which any proposition may be substituted. One type\nalso contains "clock-propositional" variables, a,b,c, etc., for\nwhich only clock-propositional variables may be substituted and that\ncorrespond to instants or moments in the semantics. The other type\nalso contains "history-propositional" variables, u,v,w, etc., for\nwhich only history-propositional variables may (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Propositional Logics Related to Heyting's and Johansson's.Krister Segerberg - 1968 - Theoria 34 (1):26-61.
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Non-classical operations hidden in classical logic.Vladimir Sotirov - 2008 - Journal of Applied Non-Classical Logics 18 (2-3):309-324.
    Objects of consideration are various non-classical connectives “hidden” in the classical logic in the form of G˛s with ˛ —a classical connective, and s—a propositional variable. One of them is negation, which is defined as G ⇒ s; another is necessity, which is defined as G ∧ s. The new operations are axiomatized and it is shown that they belong to the 4-valued logic of Lukasiewicz. A 2-point Kripke semantics is built leading directly to the 4-valued logical tables.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Simplified Kripke style semantics for some very weak modal logics.Andrzej Pietruszczak - 2009 - Logic and Logical Philosophy 18 (3-4):271-296.
    In the present paper we examine very weak modal logics C1, D1, E1, S0.5◦, S0.5◦+(D), S0.5 and some of their versions which are closed under replacement of tautological equivalents (rte-versions). We give semantics for these logics, formulated by means of Kripke style models of the form , where w is a «distinguished» world, A is a set of worlds which are alternatives to w, and V is a valuation which for formulae and worlds assigns the truth-vales such that: (i) for (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Heterogeneous logic.I. L. Humberstone - 1988 - Erkenntnis 29 (3):395 - 435.
    This paper considers the question: what becomes of the notion of a logic as a way of codifying valid arguments when the customary assumption is dropped that the premisses and conclusions of these arguments are statements from some single language? An elegant treatment of the notion of a logic, when this assumption is in force, is that provided by Dana Scott's theory of consequence relations; this treatment is appropriately generalized in the present paper to the case where we do not (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Possible Worlds in Use.Andrzej Indrzejczak - 2011 - Studia Logica 99 (1-3):229-248.
    The paper is a brief survey of the most important semantic constructions founded on the concept of possible world. It is impossible to capture in one short paper the whole variety of the problems connected with manifold applications of possible worlds. Hence, after a brief explanation of some philosophical matters I take a look at possible worlds from rather technical standpoint of logic and focus on the applications in formal semantics. In particular, I would like to focus on the fruitful (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On regular modal logics with axiom □ ⊤ → □□ ⊤.Kazimierz Świrydowicz - 1990 - Studia Logica 49 (2):171 - 174.
    This paper is devoted to showing certain connections between normal modal logics and those strictly regular modal logics which have as a theorem. We extend some results of E. J. Lemmon (cf. [66]). In particular we prove that the lattice of the strictly regular modal logics with the axiom is isomorphic to the lattice of the normal modal logics.
    Download  
     
    Export citation  
     
    Bookmark  
  • First-order indefinite and uniform neighbourhood semantics.Arnold Vander Nat - 1979 - Studia Logica 38 (3):277-296.
    Download  
     
    Export citation  
     
    Bookmark  
  • Modal logic with non-deterministic semantics: Part I—Propositional case.Marcelo E. Coniglio, Fariñas Del Cerro Luis & Marques Peron Newton - 2020 - Logic Journal of the IGPL 28 (3):281-315.
    Dugundji proved in 1940 that most parts of standard modal systems cannot be characterized by a single finite deterministic matrix. In the eighties, Ivlev proposed a semantics of four-valued non-deterministic matrices, in order to characterize a hierarchy of weak modal logics without the necessitation rule. In a previous paper, we extended some systems of Ivlev’s hierarchy, also proposing weaker six-valued systems in which the axiom was replaced by the deontic axiom. In this paper, we propose even weaker systems, by eliminating (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Problems of substitution and admissibility in the modal system Grz and in intuitionistic propositional calculus.V. V. Rybakov - 1990 - Annals of Pure and Applied Logic 50 (1):71-106.
    Questions connected with the admissibility of rules of inference and the solvability of the substitution problem for modal and intuitionistic logic are considered in an algebraic framework. The main result is the decidability of the universal theory of the free modal algebra imageω extended in signature by adding constants for free generators. As corollaries we obtain: there exists an algorithm for the recognition of admissibility of rules with parameters in the modal system Grz, the substitution problem for Grz and for (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Modal Extensions of Sub-classical Logics for Recovering Classical Logic.Marcelo E. Coniglio & Newton M. Peron - 2013 - Logica Universalis 7 (1):71-86.
    In this paper we introduce non-normal modal extensions of the sub-classical logics CLoN, CluN and CLaN, in the same way that S0.5 0 extends classical logic. The first modal system is both paraconsistent and paracomplete, while the second one is paraconsistent and the third is paracomplete. Despite being non-normal, these systems are sound and complete for a suitable Kripke semantics. We also show that these systems are appropriate for interpreting □ as “is provable in classical logic”. This allows us to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Decidability results in non-classical logics.Dov M. Gabbay - 1975 - Annals of Mathematical Logic 8 (3):237-295.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Amalgamation and interpolation in normal modal logics.Larisa Maksimova - 1991 - Studia Logica 50 (3-4):457 - 471.
    This is a survey of results on interpolation in propositional normal modal logics. Interpolation properties of these logics are closely connected with amalgamation properties of varieties of modal algebras. Therefore, the results on interpolation are also reformulated in terms of amalgamation.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Modal Multilattice Logic.Norihiro Kamide & Yaroslav Shramko - 2017 - Logica Universalis 11 (3):317-343.
    A modal extension of multilattice logic, called modal multilattice logic, is introduced as a Gentzen-type sequent calculus \. Theorems for embedding \ into a Gentzen-type sequent calculus S4C and vice versa are proved. The cut-elimination theorem for \ is shown. A Kripke semantics for \ is introduced, and the completeness theorem with respect to this semantics is proved. Moreover, the duality principle is proved as a characteristic property of \.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Interconnection of the Lattices of Extensions of Four Logics.Alexei Y. Muravitsky - 2017 - Logica Universalis 11 (2):253-281.
    We show that the lattices of the normal extensions of four well-known logics—propositional intuitionistic logic \, Grzegorczyk logic \, modalized Heyting calculus \ and \—can be joined in a commutative diagram. One connection of this diagram is an isomorphism between the lattices of the normal extensions of \ and \; we show some preservation properties of this isomorphism. Two other connections are join semilattice epimorphims of the lattice of the normal extensions of \ onto that of \ and of the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Antidiodorean logics and the brentano-husserl's conception of time.Vladimir L. Vasyukov - 1993 - Axiomathes 4 (3):373-388.
    In some systems of Legniewskian Ontology were introduced as a toolkit for Husserl's and Meinong's theory of objects. Here such consi- deration is extended to Brentano-Husserl's theory of time. So-called antidiodo- rean logics are used as the foundations of the approach undertaken.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The interpretation of some Lewis systems of modal logic.M. J. Cresswell - 1967 - Australasian Journal of Philosophy 45 (2):198 – 206.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A leśniewskian guide to Husserl's and meinong's jungles.Vladimir L. Vasyukov - 1993 - Axiomathes 4 (1):59-74.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Darstellung der Lewyschen Algebren.Dietrich Schwartz - 1979 - Mathematical Logic Quarterly 25 (3-6):53-56.
    Download  
     
    Export citation  
     
    Bookmark  
  • On Finite Model Property for Admissible Rules.Vladimir V. Rybakov, Vladimir R. Kiyatkin & Tahsin Oner - 1999 - Mathematical Logic Quarterly 45 (4):505-520.
    Our investigation is concerned with the finite model property with respect to admissible rules. We establish general sufficient conditions for absence of fmp w. r. t. admissibility which are applicable to modal logics containing K4: Theorem 3.1 says that no logic λ containing K4 with the co-cover property and of width > 2 has fmp w. r. t. admissibility. Surprisingly many, if not to say all, important modal logics of width > 2 are within the scope of this theorem–K4 itself, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • First-order indefinite and uniform neighbourhood semantics.Arnold Nat - 1979 - Studia Logica 38 (3):277 - 296.
    The main purpose of this paper is to define and study a particular variety of Montague-Scott neighborhood semantics for modal propositional logic. We call this variety the first-order neighborhood semantics because it consists of the neighborhood frames whose neighborhood operations are, in a certain sense, first-order definable. The paper consists of two parts. In Part I we begin by presenting a family of modal systems. We recall the Montague-Scott semantics and apply it to some of our systems that have hitherto (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Four-Valued Logics BD and DM4: Expansions.Alexander S. Karpenko - 2017 - Bulletin of the Section of Logic 46 (1/2).
    The paper discusses functional properties of some four-valued logics which are the expansions of four-valued Belnap’s logic DM4. At first, we consider the logics with two designated values, and then logics defined by matrices having the same underlying algebra, but with a different choice of designated values, i.e. with one designated value. In the preceding literature both approaches were developed independently. Moreover, we present the lattices of the functional expansions of DM4.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An algebraic look at filtrations in modal logic.W. Conradie, W. Morton & C. J. van Alten - 2013 - Logic Journal of the IGPL 21 (5):788-811.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Stable Modal Logics.Guram Bezhanishvili, Nick Bezhanishvili & Julia Ilin - 2018 - Review of Symbolic Logic 11 (3):436-469.
    Stable logics are modal logics characterized by a class of frames closed under relation preserving images. These logics admit all filtrations. Since many basic modal systems such as K4 and S4 are not stable, we introduce the more general concept of an M-stable logic, where M is an arbitrary normal modal logic that admits some filtration. Of course, M can be chosen to be K4 or S4. We give several characterizations of M-stable logics. We prove that there are continuum many (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations