Switch to: References

Citations of:

Admissible ordinals and priority arguments

In A. R. D. Mathias & Hartley Rogers (eds.), Cambridge Summer School in Mathematical Logic. New York,: Springer Verlag. pp. 311--344 (1973)

Add citations

You must login to add citations.
  1. A finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees.Steffen Lempp & Manuel Lerman - 1997 - Annals of Pure and Applied Logic 87 (2):167-185.
    We exhibit a finite lattice without critical triple that cannot be embedded into the enumerable Turing degrees. Our method promises to lead to a full characterization of the finite lattices embeddable into the enumerable Turing degrees.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Parameter definability in the recursively enumerable degrees.André Nies - 2003 - Journal of Mathematical Logic 3 (01):37-65.
    The biinterpretability conjecture for the r.e. degrees asks whether, for each sufficiently large k, the [Formula: see text] relations on the r.e. degrees are uniformly definable from parameters. We solve a weaker version: for each k ≥ 7, the [Formula: see text] relations bounded from below by a nonzero degree are uniformly definable. As applications, we show that Low 1 is parameter definable, and we provide methods that lead to a new example of a ∅-definable ideal. Moreover, we prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Structural interactions of the recursively enumerable T- and W-degrees.R. G. Downey & M. Stob - 1986 - Annals of Pure and Applied Logic 31:205-236.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Computably enumerable sets and quasi-reducibility.R. Downey, G. LaForte & A. Nies - 1998 - Annals of Pure and Applied Logic 95 (1-3):1-35.
    We consider the computably enumerable sets under the relation of Q-reducibility. We first give several results comparing the upper semilattice of c.e. Q-degrees, RQ, Q, under this reducibility with the more familiar structure of the c.e. Turing degrees. In our final section, we use coding methods to show that the elementary theory of RQ, Q is undecidable.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • A necessary and sufficient condition for embedding principally decomposable finite lattices into the computably enumerable degrees preserving greatest element.Burkhard Englert - 2001 - Annals of Pure and Applied Logic 112 (1):1-26.
    We present a necessary and sufficient condition for the embeddability of a finite principally decomposable lattice into the computably enumerable degrees preserving greatest element.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A necessary and sufficient condition for embedding ranked finite partial lattices into the computably enumerable degrees.M. Lerman - 1998 - Annals of Pure and Applied Logic 94 (1-3):143-180.
    We define a class of finite partial lattices which admit a notion of rank compatible with embedding constructions, and present a necessary and sufficient condition for the embeddability of a finite ranked partial lattice into the computably enumerable degrees.
    Download  
     
    Export citation  
     
    Bookmark   6 citations