Switch to: References

Add citations

You must login to add citations.
  1. Minimal α-degrees.Richard A. Shore - 1972 - Annals of Mathematical Logic 4 (4):393-414.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the embedding of |alpha-recursive presentable lattices into the α-recursive degrees below 0'.Dong Ping Yang - 1984 - Journal of Symbolic Logic 49 (2):488 - 502.
    Download  
     
    Export citation  
     
    Bookmark  
  • Friedberg Numbering in Fragments of Peano Arithmetic and α-Recursion Theory.Wei Li - 2013 - Journal of Symbolic Logic 78 (4):1135-1163.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Nonstandard models in recursion theory and reverse mathematics.C. T. Chong, Wei Li & Yue Yang - 2014 - Bulletin of Symbolic Logic 20 (2):170-200.
    We give a survey of the study of nonstandard models in recursion theory and reverse mathematics. We discuss the key notions and techniques in effective computability in nonstandard models, and their applications to problems concerning combinatorial principles in subsystems of second order arithmetic. Particular attention is given to principles related to Ramsey’s Theorem for Pairs.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Minimal upper bounds for ascending sequences of α-recursively enumerable degrees.C. T. Chong - 1976 - Journal of Symbolic Logic 41 (1):250-260.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reverse mathematics: the playground of logic.Richard A. Shore - 2010 - Bulletin of Symbolic Logic 16 (3):378-402.
    This paper is essentially the author's Gödel Lecture at the ASL Logic Colloquium '09 in Sofia extended and supplemented by material from some other papers. After a brief description of traditional reverse mathematics, a computational approach to is presented. There are then discussions of some interactions between reverse mathematics and the major branches of mathematical logic in terms of the techniques they supply as well as theorems for analysis. The emphasis here is on ones that lie outside the usual main (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Least upper bounds for minimal pairs of α-R.E. α-degrees.Manuel Lerman - 1974 - Journal of Symbolic Logic 39 (1):49-56.
    Download  
     
    Export citation  
     
    Bookmark  
  • A lift of a theorem of Friedberg: A Banach-Mazur functional that coincides with no α-recursive functional on the class of α-recursive functions.Robert A. di Paola - 1981 - Journal of Symbolic Logic 46 (2):216-232.
    R. M. Friedberg demonstrated the existence of a recursive functional that agrees with no Banach-Mazur functional on the class of recursive functions. In this paper Friedberg's result is generalized to both α-recursive functionals and weak α-recursive functionals for all admissible ordinals α such that $\lambda , where α * is the Σ 1 -projectum of α and λ is the Σ 2 -cofinality of α. The theorem is also established for the metarecursive case, α = ω 1 , where α (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On generalized computational complexity.Barry E. Jacobs - 1977 - Journal of Symbolic Logic 42 (1):47-58.
    If one regards an ordinal number as a generalization of a counting number, then it is natural to begin thinking in terms of computations on sets of ordinal numbers. This is precisely what Takeuti [22] had in mind when he initiated the study of recursive functions on ordinals. Kreisel and Sacks [9] too developed an ordinal recursion theory, called metarecursion theory, which specialized to the initial segment of the ordinals bounded by.The notion of admissibility was introduced by Kripke [11] and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Maximal alpha-r.e. sets and their complements.Anne Leggett - 1974 - Annals of Mathematical Logic 6 (3/4):293.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the Symmetric Enumeration Degrees.Charles M. Harris - 2007 - Notre Dame Journal of Formal Logic 48 (2):175-204.
    A set A is symmetric enumeration (se-) reducible to a set B (A ≤\sb se B) if A is enumeration reducible to B and \barA is enumeration reducible to \barB. This reducibility gives rise to a degree structure (D\sb se) whose least element is the class of computable sets. We give a classification of ≤\sb se in terms of other standard reducibilities and we show that the natural embedding of the Turing degrees (D\sb T) into the enumeration degrees (D\sb e) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some minimal pairs of alpha-recursively enumerable degrees.Manuel Lerman - 1972 - Annals of Mathematical Logic 4 (4):415.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • ∑2 Induction and infinite injury priority arguments, part II Tame ∑2 coding and the jump operator.C. T. Chong & Yue Yang - 1997 - Annals of Pure and Applied Logic 87 (2):103-116.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The recursively enumerable alpha-degrees are dense.Richard A. Shore - 1976 - Annals of Mathematical Logic 9 (1/2):123.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • An α-finite injury method of the unbounded type.C. T. Chong - 1976 - Journal of Symbolic Logic 41 (1):1-17.
    Download  
     
    Export citation  
     
    Bookmark  
  • An extension of the nondiamond theorem in classical and α-recursion theory.Klaus Ambos-Spies - 1984 - Journal of Symbolic Logic 49 (2):586-607.
    Download  
     
    Export citation  
     
    Bookmark   4 citations