Switch to: References

Citations of:

Basic Set Theory

Journal of Symbolic Logic 46 (2):417-419 (1981)

Add citations

You must login to add citations.
  1. The Axiom of Choice in Second‐Order Predicate Logic.Christine Gaßner - 1994 - Mathematical Logic Quarterly 40 (4):533-546.
    The present article deals with the power of the axiom of choice within the second-order predicate logic. We investigate the relationship between several variants of AC and some other statements, known as equivalent to AC within the set theory of Zermelo and Fraenkel with atoms, in Henkin models of the one-sorted second-order predicate logic with identity without operation variables. The construction of models follows the ideas of Fraenkel and Mostowski. It is e. g. shown that the well-ordering theorem for unary (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Generalizations of Cantor's theorem in ZF.Guozhen Shen - 2017 - Mathematical Logic Quarterly 63 (5):428-436.
    A set x is Dedekind infinite if there is an injection from ω into x; otherwise x is Dedekind finite. A set x is power Dedekind infinite if math formula, the power set of x, is Dedekind infinite; otherwise x is power Dedekind finite. For a set x, let pdfin be the set of all power Dedekind finite subsets of x. In this paper, we prove in math formula two generalizations of Cantor's theorem : The first one is that for (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Existentially closed models via constructible sets: There are 2ℵ0 existentially closed pairwise non elementarily equivalent existentially closed ordered groups. [REVIEW]Anatole Khelif - 1996 - Journal of Symbolic Logic 61 (1):277 - 284.
    We prove that there are 2 χ 0 pairwise non elementarily equivalent existentially closed ordered groups, which solve the main open problem in this area (cf. [3, 10]). A simple direct proof is given of the weaker fact that the theory of ordered groups has no model companion; the case of the ordered division rings over a field k is also investigated. Our main result uses constructible sets and can be put in an abstract general framework. Comparison with the standard (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extensionality and logicality.Gil Sagi - 2017 - Synthese (Suppl 5):1-25.
    Tarski characterized logical notions as invariant under permutations of the domain. The outcome, according to Tarski, is that our logic, which is commonly said to be a logic of extension rather than intension, is not even a logic of extension—it is a logic of cardinality. In this paper, I make this idea precise. We look at a scale inspired by Ruth Barcan Marcus of various levels of meaning: extensions, intensions and hyperintensions. On this scale, the lower the level of meaning, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Second-Order Characterizable Cardinals and Ordinals.Benjamin R. George - 2006 - Studia Logica 84 (3):425-449.
    The notions of finite and infinite second-order characterizability of cardinal and ordinal numbers are developed. Several known results for the case of finite characterizability are extended to infinite characterizability, and investigations of the second-order theory of ordinals lead to some observations about the Fraenkel-Carnap question for well-orders and about the relationship between ordinal characterizability and ordinal arithmetic. The broader significance of cardinal characterizability and the relationships between different notions of characterizability are also discussed.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • IS-A relation, the principle of comprehension and the doctrine of limitation of size.Toshiharu Waragai - 1996 - Annals of the Japan Association for Philosophy of Science 9 (1):23-34.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Cardinal invariants of infinite groups.Jörg Brendle - 1990 - Archive for Mathematical Logic 30 (3):155-170.
    LetG be a group. CallG akC-group if every element ofG has less thank conjugates. Denote byP(G) the least cardinalk such that any subset ofG of sizek contains two elements which commute.It is shown that the existence of groupsG such thatP(G) is a singular cardinal is consistent withZFC. So is the existence of groupsG which are notkC but haveP(G) (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Unifying foundations – to be seen in the phenomenon of language.Lars Löfgren - 2004 - Foundations of Science 9 (2):135-189.
    Scientific knowledge develops in an increasingly fragmentary way.A multitude of scientific disciplines branch out. Curiosity for thisdevelopment leads into quests for a unifying understanding. To a certain extent, foundational studies provide such unification. There is a tendency, however, also of a fragmentary growth of foundational studies, like in a multitude of disciplinaryfoundations. We suggest to look at the foundational problem, not primarily as a search for foundations for one discipline in another, as in some reductionist approach, but as a steady (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Finite mathematics.Shaughan Lavine - 1995 - Synthese 103 (3):389 - 420.
    A system of finite mathematics is proposed that has all of the power of classical mathematics. I believe that finite mathematics is not committed to any form of infinity, actual or potential, either within its theories or in the metalanguage employed to specify them. I show in detail that its commitments to the infinite are no stronger than those of primitive recursive arithmetic. The finite mathematics of sets is comprehensible and usable on its own terms, without appeal to any form (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Boolean algebras in ast.Klaus Schumacher - 1992 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 38 (1):373-382.
    Download  
     
    Export citation  
     
    Bookmark  
  • Omitting types for algebraizable extensions of first order logic.Tarek Sayed Ahmed - 2005 - Journal of Applied Non-Classical Logics 15 (4):465-489.
    We prove an Omitting Types Theorem for certain algebraizable extensions of first order logic without equality studied in [SAI 00] and [SAY 04]. This is done by proving a representation theorem preserving given countable sets of infinite meets for certain reducts of ?- dimensional polyadic algebras, the so-called G polyadic algebras (Theorem 5). Here G is a special subsemigroup of (?, ? o) that specifies the signature of the algebras in question. We state and prove an independence result connecting our (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • What are sets and what are they for?Alex Oliver & Timothy Smiley - 2006 - Philosophical Perspectives 20 (1):123–155.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Remark on Ascending Chain Conditions, the Countable Axiom of Choice and the Principle of Dependent Choices.Karl-Heinz Diener - 1994 - Mathematical Logic Quarterly 40 (3):415-421.
    It is easy to prove in ZF− that a relation R satisfies the maximal condition if and only if its transitive hull R* does; equivalently: R is well-founded if and only if R* is. We will show in the following that, if the maximal condition is replaced by the chain condition, as is often the case in Algebra, the resulting statement is not provable in ZF− anymore . More precisely, we will prove that this statement is equivalent in ZF− to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kategoriesätze und multiples auswahlaxiom.Norbert Brunner - 1983 - Mathematical Logic Quarterly 29 (8):435-443.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Structuralism and representation theorems.George Weaver - 1998 - Philosophia Mathematica 6 (3):257-271.
    Much of the inspiration for structuralist approaches to mathematics can be found in the late nineteenth- and early twentieth-century program of characterizing various mathematical systems upto isomorphism. From the perspective of this program, differences between isomorphic systems are irrelevant. It is argued that a different view of the import of the differences between isomorphic systems can be obtained from the perspective of contemporary discussions of representation theorems and that from this perspective both the identification of isomorphic systems and the reduction (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Some extensions of built-upness on systems of fundamental sequences.Noriya Kadota & Kiwamu Aoyama - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (4):357-364.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Partition Complete Boolean Algebras and Almost Compact Cardinals.Peter Jipsen & Henry Rose - 1999 - Mathematical Logic Quarterly 45 (2):241-255.
    For an infinite cardinal K a stronger version of K-distributivity for Boolean algebras, called k-partition completeness, is defined and investigated . It is shown that every k-partition complete Boolean algebra is K-weakly representable, and for strongly inaccessible K these concepts coincide. For regular K ≥ u, it is proved that an atomless K-partition complete Boolean algebra is an updirected union of basic K-tree algebras. Using K-partition completeness, the concept of γ-almost compactness is introduced for γ ≥ K. For strongly inaccessible (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (3 other versions)A Theory of Operations on the Universe II. Infinitary Operations.Narciso Garcia - 1991 - Mathematical Logic Quarterly 37 (31-32):481-488.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the predecessor relation in abstract algebras.Karl-Heinz Diener - 1993 - Mathematical Logic Quarterly 39 (1):492-514.
    We show the existence of a high r. e. degree bounding only joins of minimal pairs and of a high2 nonbounding r. e. degree. MSC: 03D25.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the transitive Hull of a κ-narrow relation.Karl‐Heinz Diener & K.‐H. Diener - 1992 - Mathematical Logic Quarterly 38 (1):387-398.
    We will prove in Zermelo-Fraenkel set theory without axiom of choice that the transitive hull R* of a relation R is not much “bigger” than R itself. As a measure for the size of a relation we introduce the notion of κ+-narrowness using surjective Hartogs numbers rather than the usul injective Hartogs values. The main theorem of this paper states that the transitive hull of a κ+-narrow relation is κ+-narrow. As an immediate corollary we obtain that, for every infinite cardinal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The relevant fragment of first order logic.Guillermo Badia - 2016 - Review of Symbolic Logic 9 (1):143-166.
    Under a proper translation, the languages of propositional (and quantified relevant logic) with an absurdity constant are characterized as the fragments of first order logic preserved under (world-object) relevant directed bisimulations. Furthermore, the properties of pointed models axiomatizable by sets of propositional relevant formulas have a purely algebraic characterization. Finally, a form of the interpolation property holds for the relevant fragment of first order logic.
    Download  
     
    Export citation  
     
    Bookmark   3 citations