Switch to: References

Add citations

You must login to add citations.
  1. Three arguments for wave function realism.Alyssa Ney - 2023 - European Journal for Philosophy of Science 13 (4):1-18.
    Wave function realism is an interpretative framework for quantum theories which recommends taking the central ontology of these theories to consist of the quantum wave function, understood as a field on a high-dimensional space. This paper presents and evaluates three standard arguments for wave function realism, and clarifies the sort of ontological framework these arguments support.
    Download  
     
    Export citation  
     
    Bookmark  
  • Scientific Realism without the Wave-Function: An Example of Naturalized Quantum Metaphysics.Valia Allori - 2020 - In Steven French & Juha Saatsi (eds.), Scientific Realism and the Quantum. Oxford: Oxford University Press.
    Scientific realism is the view that our best scientific theories can be regarded as (approximately) true. This is connected with the view that science, physics in particular, and metaphysics could (and should) inform one another: on the one hand, science tells us what the world is like, and on the other hand, metaphysical principles allow us to select between the various possible theories which are underdetermined by the data. Nonetheless, quantum mechanics has always been regarded as, at best, puzzling, if (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Wave Function Realism.Alyssa Ney - manuscript
    This is an introduction to wave function realism for a compendium on the philosophy of quantum mechanics that will be edited and translated into Portuguese by Raoni Arroyo, entitled Compêndio de Filosofia da Física Quântica. This essay presents the history of wave function realism, its various interpretations, the main arguments that are given for the position, and the main objections that have been raised to it.
    Download  
     
    Export citation  
     
    Bookmark  
  • The meaning of the wave function: in search of the ontology of quantum mechanics.Shan Gao - 2017 - New York, NY, USA: Cambridge University Press.
    The meaning of the wave function has been a hot topic of debate since the early days of quantum mechanics. Recent years have witnessed a growing interest in this long-standing question. Is the wave function ontic, directly representing a state of reality, or epistemic, merely representing a state of knowledge, or something else? If the wave function is not ontic, then what, if any, is the underlying state of reality? If the wave function is indeed ontic, then exactly what physical (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a view (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • No-Thing and Causality in Realistic Non-Standard Interpretations of the Quantum Mechanical Wave Function: Ex Nihilo Aliquid?Gino Tarozzi & Giovanni Macchia - 2023 - Foundations of Science 28 (1):159-184.
    It has been shown that quantum mechanics in its orthodox interpretation violates four different formulations of causality principle endowed with empirical meaning. The present work aims to highlight how even a realistic non-standard interpretation of the theory conflicts with causality in its Cartesian formulation of the principle of the non-inferiority of causes over effects. Such an interpretation, which attributes some form of weak physical reality to the wave function (called empty wave, regarded as a zero-energy wave-like phenomenon), is a sort (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconciling Spacetime and the Quantum: Relational Blockworld and the Quantum Liar Paradox. [REVIEW]William Mark Stuckey, Michael Silbserstein & Michael Cifone - 2008 - Foundations of Physics 38 (4):348-383.
    The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW’s acausal and adynamical resolution of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Muchos Mundos Bohmianos.Albert Solé - 2012 - Scientiae Studia 10 (1):105-136.
    Bohmian mechanics is commonly characterized as just another interpretation of quantum mechanics.In this paper I defend an alternative view, according to which Bohmian mechanics is better understood as a theory that can be interpreted in many ways. After characterizing the interpretive divide between the quantum potential approach and the guidance approach to Bohmian mechanics, I show that different interpretations of the theory correspond to radically different and often incompatible ontologies or Bohmian worlds. More concretely, I discuss the possibility of an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bohmian mechanics without wave function ontology.Albert Solé - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):365-378.
    In this paper, I critically assess different interpretations of Bohmian mechanics that are not committed to an ontology based on the wave function being an actual physical object that inhabits configuration space. More specifically, my aim is to explore the connection between the denial of configuration space realism and another interpretive debate that is specific to Bohmian mechanics: the quantum potential versus guidance approaches. Whereas defenders of the quantum potential approach to the theory claim that Bohmian mechanics is better formulated (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Monism: The Priority of the Whole.Jonathan Schaffer - 2010 - Philosophical Review 119 (1):31-76.
    Consider a circle and a pair of its semicircles. Which is prior, the whole or its parts? Are the semicircles dependent abstractions from their whole, or is the circle a derivative construction from its parts? Now in place of the circle consider the entire cosmos (the ultimate concrete whole), and in place of the pair of semicircles consider the myriad particles (the ultimate concrete parts). Which if either is ultimately prior, the one ultimate whole or its many ultimate parts?
    Download  
     
    Export citation  
     
    Bookmark   643 citations  
  • Grounded Shadows, Groundless Ghosts.Ezra Rubenstein - 2022 - British Journal for the Philosophy of Science 73 (3):723-750.
    According to a radical account of quantum metaphysics that I label ‘high-dimensionalism’, ordinary objects are the ‘shadows’ of high-dimensional fundamental ontology. Critics—especially Maudlin —allege that high-dimensionalism cannot provide a satisfactory explanation of the manifest image. In this paper, I examine the two main ideas behind these criticisms: that high-dimensionalist connections between fundamental and non-fundamental are 1) inscrutable, and 2) arbitrary. In response to the first, I argue that there is no metaphysically significant contrast regarding the scrutability of low- and high-dimensionalist (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Status of our Ordinary Three Dimensions in a Quantum Universe1.Alyssa Ney - 2010 - Noûs 46 (3):525-560.
    There are now several, realist versions of quantum mechanics on offer. On their most straightforward, ontological interpretation, these theories require the existence of an object, the wavefunction, which inhabits an extremely high-dimensional space known as configuration space. This raises the question of how the ordinary three-dimensional space of our acquaintance fits into the ontology of quantum mechanics. Recently, two strategies to address this question have emerged. First, Tim Maudlin, Valia Allori, and her collaborators argue that what I have just called (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Does an Adequate Physical Theory Demand a Primitive Ontology?Alyssa Ney & Kathryn Phillips - 2013 - Philosophy of Science 80 (3):454-474.
    Configuration space representations have utility in physics but are not generally taken to have ontological significance. We examine one salient reason to think configuration space representations fail to be relevant in determining the fundamental ontology of a physical theory. This is based on a claim due to several authors that fundamental theories must have primitive ontologies. This claim would,if correct, have broad ramifications for how to read metaphysics from physical theory. We survey ways of understanding the argument for a primitive (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Finding the world in the wave function: some strategies for solving the macro-object problem.Alyssa Ney - 2020 - Synthese 197 (10):4227-4249.
    Realists wanting to capture the facts of quantum entanglement in a metaphysical interpretation find themselves faced with several options: to grant some species of fundamental nonseparability, adopt holism, or to view localized spacetime systems as ultimately reducible to a higher-dimensional entity, the quantum state or wave function. Those adopting the latter approach and hoping to view the macroscopic world as grounded in the quantum wave function face the macro-object problem. The challenge is to articulate the metaphysical relation obtaining between three-dimensional (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • What is a wavefunction.Wayne C. Myrvold - 2015 - Synthese 192 (10):3247-3274.
    Much of the the discussion of the metaphysics of quantum mechanics focusses on the status of wavefunctions. This paper is about how to think about wavefunctions, when we bear in mind that quantum mechanics—that is, the nonrelativistic quantum theory of systems of a fixed, finite number of degrees of freedom—is not a fundamental theory, but arises, in a certain approximation, valid in a limited regime, from a relativistic quantum field theory. We will explicitly show how the wavefunctions of quantum mechanics, (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • On The Methodological Arguments for Wave−Function Realism.Vera Matarese - 2022 - International Studies in the Philosophy of Science 34 (2):63-80.
    The paper explores a particular line of objection against wave-function realism. This view, advocated by Bell and presently defended by Albert, North and Ney, claims tha...
    Download  
     
    Export citation  
     
    Bookmark  
  • Functionalising the wavefunction.Lorenzo Lorenzetti - 2022 - Studies in History and Philosophy of Science Part A 96 (C):141-153.
    Functionalism is the view that being x is to play the role of x. This paper defends a functionalist account of three-dimensional entities in the context of Wave Function Realism (WFR), that can explain in detail how we can recover three-dimensional entities out of the wavefunction. In particular, the essay advocates for a novel version of WFR in terms of a functional reductionist approach in the style of David Lewis. This account entails reduction of the upper entities to the bottom (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Interpreting spontaneous collapse theories.Peter J. Lewis - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):165-180.
    Spontaneous collapse theories of quantum mechanics require an interpretation if their claim to solve the measurement problem is to be vindicated. The most straightforward interpretation rule, the fuzzy link, generates a violation of common sense known as the counting anomaly. Recently, a consensus has developed that the mass density link provides an appropriate interpretation of spontaneous collapse theories that avoids the counting anomaly. In this paper, I argue that the mass density link violates common sense in just as striking a (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Interpreting spontaneous collapse theories.Peter J. Lewis - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 36 (1):165-180.
    Spontaneous collapse theories of quantum mechanics require an interpretation if their claim to solve the measurement problem is to be vindicated. The most straightforward interpretation rule, the fuzzy link, generates a violation of common sense known as the counting anomaly. Recently, a consensus has developed that the mass density link provides an appropriate interpretation of spontaneous collapse theories that avoids the counting anomaly. In this paper, I argue that the mass density link violates common sense in just as striking a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • GRW: A case study in quantum ontology.Peter J. Lewis - 2006 - Philosophy Compass 1 (2):224–244.
    This article provides an overview of the philosophical literature on the GRW theory of quantum mechanics, and argues for a particular position regarding that literature. Much of the literature is ontological; it attempts to defend a conception of what the world is like according to the GRW theory against perceived competitors. I argue that there is no real debate here, since these supposedly conflicting positions are better regarded as alternative and compatible ways of describing the world of the GRW theory.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Empty waves in Bohmian quantum mechanics.Peter J. Lewis - 2007 - British Journal for the Philosophy of Science 58 (4):787 - 803.
    There is a recurring line of argument in the literature to the effect that Bohm's theory fails to solve the measurement problem. I show that this argument fails in all its variants. Hence Bohm's theory, whatever its drawbacks, at least succeeds in solving the measurement problem. I briefly discuss a similar argument that has been raised against the GRW theory.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Space Emergence in Contemporary Physics: Why We Do Not Need Fundamentality, Layers of Reality and Emergence.Baptiste Le Bihan - 2018 - Disputatio 10 (49):71-95.
    ‘Space does not exist fundamentally: it emerges from a more fundamental non-spatial structure.’ This intriguing claim appears in various research programs in contemporary physics. Philosophers of physics tend to believe that this claim entails either that spacetime does not exist, or that it is derivatively real. In this article, I introduce and defend a third metaphysical interpretation of the claim: reductionism about space. I argue that, as a result, there is no need to subscribe to fundamentality, layers of reality and (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • A Connection between Minkowski and Galilean Space‐times in Quantum Mechanics.Douglas Kutach - 2010 - International Studies in the Philosophy of Science 24 (1):15 – 29.
    Relativistic quantum theories are equipped with a background Minkowski spacetime and non-relativistic quantum theories with a Galilean space-time. Traditional investigations have distinguished their distinct space-time structures and have examined ways in which relativistic theories become sufficiently like Galilean theories in a low velocity approximation or limit. A different way to look at their relationship is to see that both kinds of theories are special cases of a certain five-dimensional generalization involving no limiting procedures or approximations. When one compares them, striking (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Powers ontology and the quantum revolution.Robert C. Koons - 2020 - European Journal for Philosophy of Science 11 (1):1-28.
    An Aristotelian philosophy of nature rejects the modern prejudice in favor of the microscopic, a rejection that is crucial if we are to penetrate the mysteries of the quantum world. I defend an Aristotelian model by drawing on both quantum chemistry and recent work on the measurement problem. By building on the work of Hans Primas, using the distinction between quantum and classical properties that emerges in quantum chemistry at the thermodynamic or continuum limit, I develop a new version of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Puzzle for the Field Ontologists.Shan Gao - 2020 - Foundations of Physics 50 (11):1541-1553.
    It has been widely thought that the wave function describes a real, physical field in a realist interpretation of quantum mechanics. In this paper, I present a new analysis of the field ontology for the wave function. First, I argue that the non-existence of self-interactions for a quantum system such as an electron poses a puzzle for the field ontologists. If the wave function represents a physical field, then it seems odd that there are (electromagnetic and gravitational) interactions between the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Probability in GRW theory.Roman Frigg & Carl Hoefer - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):371-389.
    GRW Theory postulates a stochastic mechanism assuring that every so often the wave function of a quantum system is `hit', which leaves it in a localised state. How are we to interpret the probabilities built into this mechanism? GRW theory is a firmly realist proposal and it is therefore clear that these probabilities are objective probabilities (i.e. chances). A discussion of the major theories of chance leads us to the conclusion that GRW probabilities can be understood only as either single (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Against Radical Quantum Ontologies.Nina Emery - 2017 - Philosophy and Phenomenological Research 95 (3):564-591.
    Some theories of quantum mechanical phenomena endorse wave function realism, according to which the physical space we inhabit is very different from the physical space we appear to inhabit. In this paper I explore an argument against wave function realism that appeals to a type of simplicity that, although often overlooked, plays a crucial role in scientific theory choice. The type of simplicity in question is simplicity of fit between the way a theory says the world is and the way (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Realism about the wave function.Eddy Keming Chen - 2019 - Philosophy Compass 14 (7):e12611.
    A century after the discovery of quantum mechanics, the meaning of quantum mechanics still remains elusive. This is largely due to the puzzling nature of the wave function, the central object in quantum mechanics. If we are realists about quantum mechanics, how should we understand the wave function? What does it represent? What is its physical meaning? Answering these questions would improve our understanding of what it means to be a realist about quantum mechanics. In this survey article, I review (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Quantum Mechanics and 3 N - Dimensional Space.Bradley Monton - 2006 - Philosophy of Science 73 (5):778-789.
    I maintain that quantum mechanics is fundamentally about a system of N particles evolving in three-dimensional space, not the wave function evolving in 3N-dimensional space.
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • Quantum Mechanics and the Plight of Physicalism.Fernando Birman - 2009 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 40 (2):207-225.
    The literature on physicalism often fails to elucidate, I think, what the word physical in physical ism precisely means. Philosophers speak at times of an ideal set of fundamental physical facts, or they stipulate that physical means non-mental , such that all fundamental physical facts are fundamental facts pertaining to the non-mental. In this article, I will probe physicalism in the very much tangible framework of quantum mechanics. Although this theory, unlike “ideal physics” or some “final theory of non-mentality”, is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Quantum mechanics, time and ontology.Valia Allori - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):145-154.
    Against what is commonly accepted in many contexts, it has been recently suggested that both deterministic and indeterministic quantum theories are not time‐reversal invariant, and thus time is handed in a quantum world. In this paper, I analyze these arguments and evaluate possible reactions to them. In the context of deterministic theories, first I show that this conclusion depends on the controversial assumption that the wave‐function is a physically real scalar field in configuration space. Then I argue that answers which (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The Structure of a Quantum World.Jill North - 2013 - In Alyssa Ney & David Albert (eds.), The Wave Function: Essays on the Metaphysics of Quantum Mechanics. Oxford University Press. pp. 184-202.
    I argue that the fundamental space of a quantum mechanical world is the wavefunction's space. I argue for this using some very general principles that guide our inferences to the fundamental nature of a world, for any fundamental physical theory. I suggest that ordinary three-dimensional space exists in such a world, but is non-fundamental; it emerges from the fundamental space of the wavefunction.
    Download  
     
    Export citation  
     
    Bookmark   58 citations  
  • Protective measurements and the meaning of the wave function in the de Broglie-Bohm theory.Shan Gao - unknown
    There are three possible interpretations of the wave function in the de Broglie-Bohm theory: taking the wave function as corresponding to a physical entity or a property of the Bohmian particles or a law. In this paper, we argue that the first interpretation is favored by an analysis of protective measurements.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the reality and meaning of the wave function.Shan Gao - unknown
    In this article, we give a clearer argument for the reality of the wave function in terms of protective measurements, which does not depend on nontrivial assumptions and also overcomes existing objections. Moreover, based on an analysis of the mass and charge properties of a quantum system, we propose a new ontological interpretation of the wave function. According to this interpretation, the wave function of an N-body system represents the state of motion of N particles. Moreover, the motion of particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Floating free from physics: the metaphysics of quantum mechanics.Raoni Wohnrath Arroyo & Jonas Rafael Becker Arenhart - unknown
    We discuss some methodological aspects of the relation between physics and metaphysics by dealing specifically with the case of non-relativistic quantum mechanics. Our main claim is that current attempts to productively integrate quantum mechanics and metaphysics are best seen as approaches of what should be called ‘the metaphysics of science’, which is developed by applying already existing metaphysical concepts to scientific theories. We argue that, in this perspective, metaphysics must be understood as an autonomous discipline. It results that this metaphysics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Retroactive Event Determination and the Interpretation of Macroscopic Quantum Superposition States in Consistent Histories and Relational Quantum Mechanics.Sky Estabrook Nelson - 2011 - Journal of Scientific Exploration 25 (2).
    The concept of “objective reality” is addressed, and an ontological model is suggested, in which correlations of events in the configuration space of the wave function are considered invariant with respect to changes of observer. It is suggested that these statements make the best sense when considered from within a fifth-dimensional framework, extrapolated from the four dimensions of spacetime in a direct way. A pair of postulates is then suggested which strengthens two current models of quantum theory into a broader (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Protective Measurement: A Paradigm Shift in Understanding Quantum Mechanics.Shan Gao - unknown
    This article introduces the method of protective measurement and discusses its deep implications for the foundations of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • L'empirisme modal.Quentin Ruyant - 2017 - Dissertation, Université Rennes 1
    The aim of this thesis dissertation is to propose a novel position in the debate on scientific realism, modal empiricism, and to show its fruitfulness when it comes to interpreting the cognitive content of scientific theories. Modal empiricism is an empiricist position, according to which the aim of science is to produce empirically adequate theories rather than true theories. However, it suggests adopting a broader comprehension of experience than traditional versions of empiricism, through a commitment to natural modalities. Following modal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Swapping something real.David Glick - manuscript
    Experiments demonstrating entanglement swapping have been alleged to challenge realism about entanglement. Seevinck claims that entangle- ment “cannot be considered ontologically robust” while Healey claims that entanglement swapping “undermines the idea that ascribing an entangled state to quantum systems is a way of representing some new, non-classical, physical relation between them.” My aim in this paper is to show that realism is not threatened by the possibility of entanglement swapping, but rather, it should be informed by the phenomenon. I argue—expanding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Prolegomenon to the Ontology of the Everett Interpretation.David Wallace - unknown
    In this article, I briefly explain the quantum measurement problem and the Everett interpretation, in a way that is faithful to modern physics and yet accessible to readers without any physics training. I then consider the metaphysical lessons for ontology from quantum mechanics under the Everett interpretation. My conclusions are largely negative: I argue that very little can be said in full generality about the ontology of quantum mechanics, because quantum mechanics, like abstract classical mechanics, is a framework within which (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • A Conceptual Analysis of Julian Barbour's Time.Maria Kon - 2012 - Dissertation, University of Leeds
    One of Julian Barbour’s main aims is to solve the problem of time that appears in quantum geometrodynamics (QG). QG involves the application of canonical quantization procedure to the Hamiltonian formulation of General Relativity. The problem of time arises because the quantization of the Hamiltonian constraint results in an equation that has no explicit time parameter. Thus, it appears that the resulting equation, as apparently timeless, cannot describe evolution of quantum states. Barbour attempts to resolve the problem by allegedly eliminating (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The quantum measurement problem: State of play.David Wallace - 2007 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • The Everett Interpretation.David Wallace - unknown
    The Everett interpretation of quantum mechanics - better known as the Many-Worlds Theory - has had a rather uneven reception. Mainstream philosophers have scarcely heard of it, save as science fiction. In philosophy of physics it is well known but has historically been fairly widely rejected. Among physicists, it is taken very seriously indeed, arguably tied for first place in popularity with more traditional operationalist views of quantum mechanics. In this article, I provide a fairly short and self-contained introduction to (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Realismo e Interpretación en mecánica bohmiana.Albert Solé - 2010 - Dissertation, Universidad Complutense de Madrid
    En esta tesis hacemos un análisis comparativo de las distintas interpretaciones de la mecánica bohmiana en relación con el realismo científico. En primer lugar discutimos si cabe encontrar una interpretación de la teoría que satisfaga el requisito de que toda entidad real existe en el espacio físico tridimensional. Luego, discutimos el desempeño de las distintas interpretaciones de la teoría en relación con el principio de fiabilidad de la medida. Finalmente, analizamos el argumento de las trayectorias surrealistas. De acuerdo con este (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Against the field ontology of quantum mechanics.Shan Gao - unknown
    It has been widely thought that the ontology of quantum mechanics is real, physical fields. In this paper, I will present a new argument against the field ontology of quantum mechanics by analyzing one-body systems such as an electron. First, I argue that if the physical entity described by the wave function of an electron is a field, then this field is massive and charged. Next, I argue that if a field is massive and charged, then any two parts of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Statistical VS Wave Realism in the Foundations of Quantum Mechanics.Claudio Calosi, Vincenzo Fano, Pierluigi Graziani & Gino Tarozzi - unknown
    Different realistic attitudes towards wavefunctions and quantum states are as old as quantum theory itself. Recently Pusey, Barret and Rudolph on the one hand, and Auletta and Tarozzi on the other, have proposed new interesting arguments in favor of a broad realistic interpretation of quantum mechanics that can be considered the modern heir to some views held by the fathers of quantum theory. In this paper we give a new and detailed presentation of such arguments, propose a new taxonomy of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An argument for 4d blockworld from a geometric interpretation of non-relativistic quantum mechanics.Michael Silberstein, W. M. Stuckey & Michael Cifone - unknown
    We use a new, distinctly “geometrical” interpretation of non-relativistic quantum mechanics (NRQM) to argue for the fundamentality of the 4D blockworld ontology. We argue for a geometrical interpretation whose fundamental ontology is one of spacetime relations as opposed to constructive entities whose time-dependent behavior is governed by dynamical laws. Our view rests on two formal results: Kaiser (1981 & 1990), Bohr & Ulfbeck (1995) and Anandan, (2003) showed independently that the Heisenberg commutation relations of NRQM follow from the relativity of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpreting Quantum Mechanics in Terms of Random Discontinuous Motion of Particles.Shan Gao - unknown
    This thesis is an attempt to reconstruct the conceptual foundations of quantum mechanics. First, we argue that the wave function in quantum mechanics is a description of random discontinuous motion of particles, and the modulus square of the wave function gives the probability density of the particles being in certain locations in space. Next, we show that the linear non-relativistic evolution of the wave function of an isolated system obeys the free Schrödinger equation due to the requirements of spacetime translation (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Scientific Realism and Primitive Ontology Or: The Pessimistic Induction and the Nature of the Wave Function.Valia Allori - 2018 - Lato Sensu 1 (5):69-76.
    In this paper I wish to connect the recent debate in the philosophy of quantum mechanics concerning the nature of the wave function to the historical debate in the philosophy of science regarding the tenability of scientific realism. Being realist about quantum mechanics is particularly challenging when focusing on the wave function. According to the wave function ontology approach, the wave function is a concrete physical entity. In contrast, according to an alternative viewpoint, namely the primitive ontology approach, the wave (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations