Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Twist-Valued Models for Three-valued Paraconsistent Set Theory.Walter Carnielli & Marcelo E. Coniglio - 2021 - Logic and Logical Philosophy 30 (2):187-226.
    Boolean-valued models of set theory were independently introduced by Scott, Solovay and Vopěnka in 1965, offering a natural and rich alternative for describing forcing. The original method was adapted by Takeuti, Titani, Kozawa and Ozawa to lattice-valued models of set theory. After this, Löwe and Tarafder proposed a class of algebras based on a certain kind of implication which satisfy several axioms of ZF. From this class, they found a specific 3-valued model called PS3 which satisfies all the axioms of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Transfinite numbers in paraconsistent set theory.Zach Weber - 2010 - Review of Symbolic Logic 3 (1):71-92.
    This paper begins an axiomatic development of naive set theoryin a paraconsistent logic. Results divide into two sorts. There is classical recapture, where the main theorems of ordinal and Peano arithmetic are proved, showing that naive set theory can provide a foundation for standard mathematics. Then there are major extensions, including proofs of the famous paradoxes and the axiom of choice (in the form of the well-ordering principle). At the end I indicate how later developments of cardinal numbers will lead (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • Paraconsistent logic.Graham Priest - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   182 citations  
  • Ultralogic as Universal?: The Sylvan Jungle - Volume 4.Richard Routley - 2019 - Cham, Switzerland: Springer Verlag.
    Ultralogic as Universal? is a seminal text in non-classcial logic. Richard Routley presents a hugely ambitious program: to use an 'ultramodal' logic as a universal key, which opens, if rightly operated, all locks. It provides a canon for reasoning in every situation, including illogical, inconsistent and paradoxical ones, realized or not, possible or not. A universal logic, Routley argues, enables us to go where no other logic—especially not classical logic—can. Routley provides an expansive and singular vision of how a universal (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Semantics for Naive Set Theory in Many-Valued Logics.Thierry Libert - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 121--136.
    Download  
     
    Export citation  
     
    Bookmark  
  • Paraconsistent and Paracomplete Zermelo–Fraenkel Set Theory.Yurii Khomskii & Hrafn Valtýr Oddsson - forthcoming - Review of Symbolic Logic:1-31.
    We present a novel treatment of set theory in a four-valued paraconsistent and paracomplete logic, i.e., a logic in which propositions can be both true and false, and neither true nor false. Our approach is a significant departure from previous research in paraconsistent set theory, which has almost exclusively been motivated by a desire to avoid Russell’s paradox and fulfil naive comprehension. Instead, we prioritise setting up a system with a clear ontology of non-classical sets, which can be used to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-classical foundations of set theory.Sourav Tarafder - 2022 - Journal of Symbolic Logic 87 (1):347-376.
    In this paper, we use algebra-valued models to study cardinal numbers in a class of non-classical set theories. The algebra-valued models of these non-classical set theories validate the Axiom of Choice, if the ground model validates it. Though the models are non-classical, the foundations of cardinal numbers in these models are similar to those in classical set theory. For example, we show that mathematical induction, Cantor’s theorem, and the Schröder–Bernstein theorem hold in these models. We also study a few basic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Twist-Valued Models for Three-Valued Paraconsistent Set Theory.Walter A. Carnielli & Marcelo E. Coniglio - forthcoming - Logic and Logical Philosophy:1.
    We propose in this paper a family of algebraic models of ZFC based on the three-valued paraconsistent logic LPT0, a linguistic variant of da Costa and D’Ottaviano’s logic J3. The semantics is given by twist structures defined over complete Boolean agebras. The Boolean-valued models of ZFC are adapted to twist-valued models of an expansion of ZFC by adding a paraconsistent negation. This allows for inconsistent sets w satisfying ‘not (w = w)’, where ‘not’ stands for the paraconsistent negation. Finally, our (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Extensionality and Restriction in Naive Set Theory.Zach Weber - 2010 - Studia Logica 94 (1):87-104.
    The naive set theory problem is to begin with a full comprehension axiom, and to find a logic strong enough to prove theorems, but weak enough not to prove everything. This paper considers the sub-problem of expressing extensional identity and the subset relation in paraconsistent, relevant solutions, in light of a recent proposal from Beall, Brady, Hazen, Priest and Restall [4]. The main result is that the proposal, in the context of an independently motivated formalization of naive set theory, leads (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • What is categorical structuralism?Geoffrey Hellman - 2006 - In Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.), The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today. Dordrecht, Netherland: Springer. pp. 151--161.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A bridge between q-worlds.Benjamin Eva, Masanao Ozawa & Andreas Doering - 2021 - Review of Symbolic Logic 14 (2):447-486.
    Quantum set theory and topos quantum theory are two long running projects in the mathematical foundations of quantum mechanics that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory inside of nonclassical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to the physical interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reply to Bjørdal.Zach Weber - 2011 - Review of Symbolic Logic 4 (1):109-113.
    Download  
     
    Export citation  
     
    Bookmark  
  • Property Identity and Relevant Conditionals.Zach Weber - 2020 - Australasian Philosophical Review 4 (2):147-155.
    ABSTRACT In ‘Properties, Propositions, and Conditionals’ Field [2021] advances further on our understanding of the logic and meaning of naive theories – theories that maintain, in the face of paradox, basic assumptions about properties and propositions. His work follows in a tradition going back over 40 years now, of using Kripke fixed-point model constructions to show how naive schemas can be (Post) consistent, as long as one embeds in a non-classical logic. A main issue in all this research is the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalized Algebra-Valued Models of Set Theory.Benedikt Löwe & Sourav Tarafder - 2015 - Review of Symbolic Logic 8 (1):192-205.
    We generalize the construction of lattice-valued models of set theory due to Takeuti, Titani, Kozawa and Ozawa to a wider class of algebras and show that this yields a model of a paraconsistent logic that validates all axioms of the negation-free fragment of Zermelo-Fraenkel set theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Notes on inconsistent set theory.Zach Weber - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 315--328.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Age of Alternative Logics: Assessing Philosophy of Logic and Mathematics Today.Johan van Benthem, Gerhard Heinzman, M. Rebushi & H. Visser (eds.) - 2006 - Dordrecht, Netherland: Springer.
    This book explores the interplay between logic and science, describing new trends, new issues and potential research developments.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Fixed-Point Models for Theories of Properties and Classes.Greg Restall - 2017 - Australasian Journal of Logic 14 (1).
    There is a vibrant community among philosophical logicians seeking to resolve the paradoxes of classes, properties and truth by way of adopting some non-classical logic in which trivialising paradoxical arguments are not valid. There is also a long tradition in theoretical computer science|going back to Dana Scott's fixed point model construction for the untyped lambda-calculus of models allowing for fixed points. In this paper, I will bring these traditions closer together, to show how these model constructions can shed light on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Research on Set Theory Based on Paraconsistent Logic.Shi Jing - 2020 - International Journal of Philosophy 8 (2):43.
    Download  
     
    Export citation  
     
    Bookmark  
  • Topological Models for Extensional Partial Set Theory.Roland Hinnion & Thierry Libert - 2008 - Notre Dame Journal of Formal Logic 49 (1):39-53.
    We state the consistency problem of extensional partial set theory and prove two complementary results toward a definitive solution. The proof of one of our results makes use of an extension of the topological construction that was originally applied in the paraconsistent case.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Bridge Between Q-Worlds.Andreas Döring, E. V. A. Benjamin & Masanao Ozawa - 2021 - Review of Symbolic Logic 14 (2):447-486.
    Quantum set theory (QST) and topos quantum theory (TQT) are two long running projects in the mathematical foundations of quantum mechanics (QM) that share a great deal of conceptual and technical affinity. Most pertinently, both approaches attempt to resolve some of the conceptual difficulties surrounding QM by reformulating parts of the theory inside of nonclassical mathematical universes, albeit with very different internal logics. We call such mathematical universes, together with those mathematical and logical structures within them that are pertinent to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation