Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • (1 other version)Infinitesimal Probabilities.Sylvia Wenmackers - 2019 - In Richard Pettigrew & Jonathan Weisberg (eds.), The Open Handbook of Formal Epistemology. PhilPapers Foundation. pp. 199-265.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Non-Measurability, Imprecise Credences, and Imprecise Chances.Yoaav Isaacs, Alan Hájek & John Hawthorne - 2021 - Mind 131 (523):892-916.
    – We offer a new motivation for imprecise probabilities. We argue that there are propositions to which precise probability cannot be assigned, but to which imprecise probability can be assigned. In such cases the alternative to imprecise probability is not precise probability, but no probability at all. And an imprecise probability is substantially better than no probability at all. Our argument is based on the mathematical phenomenon of non-measurable sets. Non-measurable propositions cannot receive precise probabilities, but there is a natural (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The shooting-room paradox and conditionalizing on measurably challenged sets.Paul Bartha & Christopher Hitchcock - 1999 - Synthese 118 (3):403-437.
    We provide a solution to the well-known “Shooting-Room” paradox, developed by John Leslie in connection with his Doomsday Argument. In the “Shooting-Room” paradox, the death of an individual is contingent upon an event that has a 1/36 chance of occurring, yet the relative frequency of death in the relevant population is 0.9. There are two intuitively plausible arguments, one concluding that the appropriate subjective probability of death is 1/36, the other that this probability is 0.9. How are these two values (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Timothy Williamson’s Coin-Flipping Argument: Refuted Prior to Publication?Colin Howson - 2019 - Erkenntnis 86 (3):575-583.
    In a well-known paper, Timothy Williamson claimed to prove with a coin-flipping example that infinitesimal-valued probabilities cannot save the principle of Regularity, because on pain of inconsistency the event ‘all tosses land heads’ must be assigned probability 0, whether the probability function is hyperreal-valued or not. A premise of Williamson’s argument is that two infinitary events in that example must be assigned the same probability because they are isomorphic. It was argued by Howson that the claim of isomorphism fails, but (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Consistency of Probabilistic Regresses. A Reply to Jeanne Peijnenburg and David Atkinson.Frederik Herzberg - 2010 - Studia Logica 94 (3):331-345.
    In a recent paper, Jeanne Peijnenburg and David Atkinson [ Studia Logica, 89:333-341 ] have challenged the foundationalist rejection of infinitism by giving an example of an infinite, yet explicitly solvable regress of probabilistic justification. So far, however, there has been no criterion for the consistency of infinite probabilistic regresses, and in particular, foundationalists might still question the consistency of the solvable regress proposed by Peijnenburg and Atkinson.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Internal laws of probability, generalized likelihoods and Lewis' infinitesimal chances–a response to Adam Elga.Frederik Herzberg - 2007 - British Journal for the Philosophy of Science 58 (1):25-43.
    The rejection of an infinitesimal solution to the zero-fit problem by A. Elga ([2004]) does not seem to appreciate the opportunities provided by the use of internal finitely-additive probability measures. Indeed, internal laws of probability can be used to find a satisfactory infinitesimal answer to many zero-fit problems, not only to the one suggested by Elga, but also to the Markov chain (that is, discrete and memory-less) models of reality. Moreover, the generalization of likelihoods that Elga has in mind is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Aggregating infinitely many probability measures.Frederik Herzberg - 2015 - Theory and Decision 78 (2):319-337.
    The problem of how to rationally aggregate probability measures occurs in particular when a group of agents, each holding probabilistic beliefs, needs to rationalise a collective decision on the basis of a single ‘aggregate belief system’ and when an individual whose belief system is compatible with several probability measures wishes to evaluate her options on the basis of a single aggregate prior via classical expected utility theory. We investigate this problem by first recalling some negative results from preference and judgment (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Forcing in nonstandard analysis.Masanao Ozawa - 1994 - Annals of Pure and Applied Logic 68 (3):263-297.
    A nonstandard universe is constructed from a superstructure in a Boolean-valued model of set theory. This provides a new framework of nonstandard analysis with which methods of forcing are incorporated naturally. Various new principles in this framework are provided together with the following applications: An example of an 1-saturated Boolean ultrapower of the real number field which is not Scott complete is constructed. Infinitesimal analysis based on the generic extension of the hyperreal numbers is provided, and the hull completeness theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The principle of signature exchangeability.Tahel Ronel & Alena Vencovská - 2016 - Journal of Applied Logic 15:16-45.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • A Non-Standard Analysis of a Cultural Icon: The Case of Paul Halmos.Piotr Błaszczyk, Alexandre Borovik, Vladimir Kanovei, Mikhail G. Katz, Taras Kudryk, Semen S. Kutateladze & David Sherry - 2016 - Logica Universalis 10 (4):393-405.
    We examine Paul Halmos’ comments on category theory, Dedekind cuts, devil worship, logic, and Robinson’s infinitesimals. Halmos’ scepticism about category theory derives from his philosophical position of naive set-theoretic realism. In the words of an MAA biography, Halmos thought that mathematics is “certainty” and “architecture” yet 20th century logic teaches us is that mathematics is full of uncertainty or more precisely incompleteness. If the term architecture meant to imply that mathematics is one great solid castle, then modern logic tends to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From discrete to continuous time.H. Jerome Keisler - 1991 - Annals of Pure and Applied Logic 52 (1-2):99-141.
    A general metatheorem is proved which reduces a wide class of statements about continuous time stochastic processes to statements about discrete time processes. We introduce a strong language for stochastic processes, and a concept of forcing for sequences of discrete time processes. The main theorem states that a sentence in the language is true if and only if it is forced. Although the stochastic process case is emphasized in order to motivate the results, they apply to a wider class of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Probability logic with conditional expectation.Sergio Fajardo - 1985 - Annals of Pure and Applied Logic 28 (2):137-161.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nonstandard analysis of global attractors.Dalibor Pražák & Jakub Slavík - 2015 - Mathematical Logic Quarterly 61 (4-5):315-328.
    Download  
     
    Export citation  
     
    Bookmark  
  • Hierarchies of measure-theoretic ultrafilters.Michael Benedikt - 1999 - Annals of Pure and Applied Logic 97 (1-3):203-219.
    We study relations between measure-theoretic classes of ultrafilters, such as the Property M ultrafilters of [4], with other well-known ultrafilter classes. We define several classes of measure theoretic ultrafilters, of which the Property M ultrafilters are the strongest. We show which containments are provable in ZFC between these measure-theoretic ultrafilters and boolean combinations of well-known ultrafilters such as the selective, semi-selective, and P-point ultrafilters. We also list some of the containment results between measure-theoretic ultrafilters and several other ultrafilter classes, such (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Consistency of Probabilistic Regresses: Some Implications for Epistemological Infinitism. [REVIEW]Frederik Herzberg - 2013 - Erkenntnis 78 (2):371-382.
    This note employs the recently established consistency theorem for infinite regresses of probabilistic justification (Herzberg in Stud Log 94(3):331–345, 2010) to address some of the better-known objections to epistemological infinitism. In addition, another proof for that consistency theorem is given; the new derivation no longer employs nonstandard analysis, but utilises the Daniell–Kolmogorov theorem.
    Download  
     
    Export citation  
     
    Bookmark   5 citations