Switch to: References

Add citations

You must login to add citations.
  1. Time, quantum mechanics, and probability.Simon Saunders - 1998 - Synthese 114 (3):373-404.
    A variety of ideas arising in decoherence theory, and in the ongoing debate over Everett's relative-state theory, can be linked to issues in relativity theory and the philosophy of time, specifically the relational theory of tense and of identity over time. These have been systematically presented in companion papers (Saunders 1995; 1996a); in what follows we shall consider the same circle of ideas, but specifically in relation to the interpretation of probability, and its identification with relations in the Hilbert Space (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   91 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   82 citations  
  • Objective Probability in Everettian Quantum Mechanics.Alastair Wilson - 2013 - British Journal for the Philosophy of Science 64 (4):709-737.
    David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this article I propose some (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Everettian quantum mechanics without branching time.Alastair Wilson - 2012 - Synthese 188 (1):67-84.
    In this paper I assess the prospects for combining contemporary Everettian quantum mechanics (EQM) with branching-time semantics in the tradition of Kripke, Prior, Thomason and Belnap. I begin by outlining the salient features of ‘decoherence-based’ EQM, and of the ‘consistent histories’ formalism that is particularly apt for conceptual discussions in EQM. This formalism permits of both ‘branching worlds’ and ‘parallel worlds’ interpretations; the metaphysics of EQM is in this sense underdetermined by the physics. A prominent argument due to Lewis (On (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • ‘Many Minds’ Interpretations of Quantum Mechanics: Replies to Replies.Michael Lockwood - 1996 - British Journal for the Philosophy of Science 47 (3):445-461.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Identity and probability in Everett's multiverse.P. Tappenden - 2000 - British Journal for the Philosophy of Science 51 (1):99-114.
    There are currently several versions of Everett's relative state interpretation of quantum mechanics, responding to a number of perceived problems for the original proposal. One of those problems is whether Everett's idea is in accord with the standard 'probabilistic' interpretation implicit in the Born rule. I argue in defence of what appears to be Everett's original view on this. The contribution I aim to make is a more complete discussion of the central issues of the identity of objects and observers (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Probability and nonlocality in many minds interpretations of quantum mechanics.Meir Hemmo & Itamar Pitowsky - 2003 - British Journal for the Philosophy of Science 54 (2):225-243.
    We argue that certain types of many minds (and many worlds) interpretations of quantum mechanics, e.g. Lockwood ([1996a]), Deutsch ([1985]) do not provide a coherent interpretation of the quantum mechanical probabilistic algorithm. By contrast, in Albert and Loewer's ([1988]) version of the many minds interpretation, there is a coherent interpretation of the quantum mechanical probabilities. We consider Albert and Loewer's probability interpretation in the context of Bell-type and GHZ-type states and argue that it implies a certain (weak) form of nonlocality. (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On many-minds interpretations of quantum theory.Matthew J. Donald - unknown
    This paper is a response to some recent discussions of many-minds interpretations in the philosophical literature. After an introduction to the many-minds idea, the complexity of quantum states for macroscopic objects is stressed. Then it is proposed that a characterization of the physical structure of observers is a proper goal for physical theory. It is argued that an observer cannot be defined merely by the instantaneous structure of a brain, but that the history of the brain's functioning must also be (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Skow on the Passage of Time.Alastair Wilson - 2018 - Analysis 78 (1):117-128.
    In his book Objective Becoming (Skow 2015), Bradford Skow has offered a rich and systematic treatment of the passage of time. We learn much about what objective passage could and could not amount to from engaging with his careful work. Skow’s overall conclusion is that the ‘block universe’ deflationary theory of passage is stronger than any currently available version of the recently-popular moving spotlight theory of temporal passage. To help establish this conclusion, Skow provides a taxonomy of theories of temporal (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Chalmers on consciousness and quantum mechanics.Alex Byrne & Ned Hall - 1999 - Philosophy of Science 66 (3):370-90.
    The textbook presentation of quantum mechanics, in a nutshell, is this. The physical state of any isolated system evolves deterministically in accordance with Schrödinger's equation until a "measurement" of some physical magnitude M (e.g. position, energy, spin) is made. Restricting attention to the case where the values of M are discrete, the system's pre-measurement state-vector f is a linear combination, or "superposition", of vectors f1, f2,... that individually represent states that..
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Space-time and probability.Simon Saunders - unknown
    Special relativity is most naturally formulated as a theory of spacetime geometry, but within the spacetime framework probability appears to be a purely epistemic notion. It is possible that progress can be made with rather different approaches - covariant stochastic equations, in particular - but the results to date are not encouraging. However, it seems a non-epistemic notion of probability can be made out in Minkowski space on Everett's terms. I shall work throughout with the consistent histories formalism. I shall (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Conceptual Analysis of Julian Barbour's Time.Maria Kon - 2012 - Dissertation, University of Leeds
    One of Julian Barbour’s main aims is to solve the problem of time that appears in quantum geometrodynamics (QG). QG involves the application of canonical quantization procedure to the Hamiltonian formulation of General Relativity. The problem of time arises because the quantization of the Hamiltonian constraint results in an equation that has no explicit time parameter. Thus, it appears that the resulting equation, as apparently timeless, cannot describe evolution of quantum states. Barbour attempts to resolve the problem by allegedly eliminating (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On dualistic interpretations of quantum mechanics.Bradley Monton - unknown
    Dualistic interpretations attempt to solve the measurement problem of quantum mechanics by postulating the existence of non-physical minds, and by giving a suitable dynamical equation for how these minds evolve. I consider the relative merits of three extant dualistic interpretations, and I defend Squires’ interpretation as preferable to the Albert/ Loewer interpretations. I also argue that, for all three of these interpretations, the minds evolve independently of the physical universe, and hence render the physical universe otiose; the interpretations are better (...)
    Download  
     
    Export citation  
     
    Bookmark