Switch to: References

Add citations

You must login to add citations.
  1. Four Tails Problems for Dynamical Collapse Theories.Kelvin J. McQueen - 2015 - Studies in the History and Philosophy of Modern Physics 49:10-18.
    The primary quantum mechanical equation of motion entails that measurements typically do not have determinate outcomes, but result in superpositions of all possible outcomes. Dynamical collapse theories (e.g. GRW) supplement this equation with a stochastic Gaussian collapse function, intended to collapse the superposition of outcomes into one outcome. But the Gaussian collapses are imperfect in a way that leaves the superpositions intact. This is the tails problem. There are several ways of making this problem more precise. But many authors dismiss (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Does it Make Sense to Speak of Self-Locating Uncertainty in the Universal Wave Function? Remarks on Sebens and Carroll.Adrian Kent - 2015 - Foundations of Physics 45 (2):211-217.
    Following a proposal of Vaidman The Stanford encyclopaedia of philosophy, 2014) The probable and the improbable: understanding probability in physics, essays in memory of Itamar Pitowsky, 2011), Sebens and Carroll , have argued that in Everettian quantum theory, observers are uncertain, before they complete their observation, about which Everettian branch they are on. They argue further that this solves the problem of making sense of probabilities within Everettian quantum theory, even though the theory itself is deterministic. We note some problems (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Belief Update across Fission.Wolfgang Schwarz - 2015 - British Journal for the Philosophy of Science 66 (3):659-682.
    When an agent undergoes fission, how should the beliefs of the fission results relate to the pre-fission beliefs? This question is important for the Everett interpretation of quantum mechanics, but it is of independent philosophical interest. Among other things, fission scenarios demonstrate that ‘self-locating’ information can affect the probability of uncentred propositions even if an agent has no essentially self-locating uncertainty. I present a general update rule for centred beliefs that gives sensible verdicts in cases of fission, without relying on (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Probability in the Many-Worlds Interpretation of Quantum Mechanics.Lev Vaidman - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 299--311.
    It is argued that, although in the Many-Worlds Interpretation of quantum mechanics there is no ``probability'' for an outcome of a quantum experiment in the usual sense, we can understand why we have an illusion of probability. The explanation involves: a). A ``sleeping pill'' gedanken experiment which makes correspondence between an illegitimate question: ``What is the probability of an outcome of a quantum measurement?'' with a legitimate question: ``What is the probability that ``I'' am in the world corresponding to that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Observers and Locality in Everett Quantum Field Theory.Mark A. Rubin - 2011 - Foundations of Physics 41 (7):1236-1262.
    A model for measurement in collapse-free nonrelativistic fermionic quantum field theory is presented. In addition to local propagation and effectively-local interactions, the model incorporates explicit representations of localized observers, thus extending an earlier model of entanglement generation in Everett quantum field theory (Rubin in Found. Phys. 32:1495–1523, 2002). Transformations of the field operators from the Heisenberg picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields, establish the locality of the model. The model is applied to manifestly-local calculations of the results (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why the Hamilton Operator Alone Is not Enough.I. Schmelzer - 2009 - Foundations of Physics 39 (5):486-498.
    In the many worlds community there seems to exist a belief that the physics of quantum theory is completely defined by it’s Hamilton operator given in an abstract Hilbert space, especially that the position basis may be derived from it as preferred using decoherence techniques.We show, by an explicit example of non-uniqueness, taken from the theory of the KdV equation, that the Hamilton operator alone is not sufficient to fix the physics. We need the canonical operators $\hat{p}$ , $\hat{q}$ as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Relative Frequency and Probability in the Everett Interpretation of Heisenberg-Picture Quantum Mechanics.Mark A. Rubin - 2003 - Foundations of Physics 33 (3):379-405.
    The existence of probability in the sense of the frequency interpretation, i.e., probability as “long term relative frequency,” is shown to follow from the dynamics and the interpretational rules of Everett quantum mechanics in the Heisenberg picture. This proof is free of the difficulties encountered in applying to the Everett interpretation previous results regarding relative frequency and probability in quantum mechanics. The ontology of the Everett interpretation in the Heisenberg picture is also discussed.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Locality in the Everett Interpretation of Quantum Field Theory.Mark A. Rubin - 2002 - Foundations of Physics 32 (10):1495-1523.
    Recently it has been shown that transformations of Heisenberg-picture operators are the causal mechanism which allows Bell-theorem-violating correlations at a distance to coexist with locality in the Everett interpretation of quantum mechanics. A calculation to first order in perturbation theory of the generation of EPRB entanglement in nonrelativistic fermionic field theory in the Heisenberg picture illustrates that the same mechanism leads to correlations without nonlocality in quantum field theory as well. An explicit transformation is given to a representation in which (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Weak-measurement elements of reality.Lev Vaidman - 1996 - Foundations of Physics 26 (7):895-906.
    A brief review of the attempts to define “elements of reality” in the framework of quantum theory is presented. It is noted that most definitions of elements of reality have in common the feature to be a definite outcome of some measurement. Elements of reality are extended to pre- and post- selected systems and to measurements which fulfill certain criteria of weakness of the coupling. Some features of the newly introduced concepts are discussed.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Natural Kinds as Scientific Models.Luiz Henrique Dutra - 2011 - Boston Studies in the Philosophy of Science 290:141-150.
    The concept of natural kind is center stage in the debates about scientific realism. Champions of scientific realism such as Richard Boyd hold that our most developed scientific theories allow us to “cut the world at its joints” (Boyd, 1981, 1984, 1991). In the long run we can disclose natural kinds as nature made them, though as science progresses improvements in theory allow us to revise the extension of natural kind terms.
    Download  
     
    Export citation  
     
    Bookmark  
  • The measure of existence of a quantum world and the Sleeping Beauty Problem.Berry Groisman, Na'ama Hallakoun & Lev Vaidman - 2013 - Analysis 73 (4):695-706.
    Next SectionAn attempt to resolve the controversy regarding the solution of the Sleeping Beauty Problem in the framework of the Many-Worlds Interpretation led to a new controversy regarding the Quantum Sleeping Beauty Problem. We apply the concept of a measure of existence of a world and reach the solution known as ‘thirder’ solution which differs from Peter Lewis’s ‘halfer’ assertion. We argue that this method provides a simple and powerful tool for analysing rational decision theory problems.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Objective Probability in Everettian Quantum Mechanics.Alastair Wilson - 2013 - British Journal for the Philosophy of Science 64 (4):709-737.
    David Wallace has given a decision-theoretic argument for the Born Rule in the context of Everettian quantum mechanics. This approach promises to resolve some long-standing problems with probability in EQM, but it has faced plenty of resistance. One kind of objection charges that the requisite notion of decision-theoretic uncertainty is unavailable in the Everettian picture, so that the argument cannot gain any traction; another kind of objection grants the proof’s applicability and targets the premises. In this article I propose some (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Entropy - A Guide for the Perplexed.Roman Frigg & Charlotte Werndl - 2011 - In Claus Beisbart & Stephan Hartmann (eds.), Probabilities in Physics. Oxford, GB: Oxford University Press. pp. 115-142.
    Entropy is ubiquitous in physics, and it plays important roles in numerous other disciplines ranging from logic and statistics to biology and economics. However, a closer look reveals a complicated picture: entropy is defined differently in different contexts, and even within the same domain different notions of entropy are at work. Some of these are defined in terms of probabilities, others are not. The aim of this chapter is to arrive at an understanding of some of the most important notions (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Typicality and Notions of Probability in Physics.Sheldon Goldstein - 2012 - In Yemima Ben-Menahem & Meir Hemmo (eds.), Probability in Physics. Springer. pp. 59--71.
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Many Worlds and Schrodinger's First Quantum Theory.Valia Allori, Sheldon Goldstein, Roderich Tumulka & Nino Zanghì - 2011 - British Journal for the Philosophy of Science 62 (1):1-27.
    Schrödinger’s first proposal for the interpretation of quantum mechanics was based on a postulate relating the wave function on configuration space to charge density in physical space. Schrödinger apparently later thought that his proposal was empirically wrong. We argue here that this is not the case, at least for a very similar proposal with charge density replaced by mass density. We argue that when analyzed carefully, this theory is seen to be an empirically adequate many-worlds theory and not an empirically (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Varieties of divergence: A response to Saunders and Wallace.Paul Tappenden - unknown
    I continue to maintain that David Lewis’s concept of overlapping persons cannot yield pre-measurement uncertainty in the Everett interpretation of quantum mechanics in the way that Simon Saunders and David Wallace originally seemed to suggest. However, I argue that in their reply to me they make it clear that they do not wish to invoke overlap of persons after all. That makes it mysterious why they defended their interpretation of personal overlap in the first place and questionable what role overlap (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Expectancy and rational action prior to personal fission.Paul Tappenden - 2011 - Philosophical Studies 153 (2):299 - 306.
    Some analyses of personal fission suggest that an informed subject should expect to have a distinct experience of each outcome simultaneously. Is rational provision for the future possible in such unfamiliar circumstances? I argue that, with some qualification, the subject can reasonably act as if faced with alternative possible outcomes with precise probabilities rather than multiple actual outcomes.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum probability and many worlds.Meir Hemmo - 2007 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 38 (2):333-350.
    We discuss the meaning of probabilities in the many worlds interpretation of quantum mechanics. We start by presenting very briefly the many worlds theory, how the problem of probability arises, and some unsuccessful attempts to solve it in the past. Then we criticize a recent attempt by Deutsch to derive the quantum mechanical probabilities from the nonprobabilistic parts of quantum mechanics and classical decision theory. We further argue that the Born probability does not make sense even as an additional probability (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On schizophrenic experiences of the neutron or why we should believe in the many‐worlds interpretation of quantum theory.Lev Vaidman - 1990 - International Studies in the Philosophy of Science 12 (3):245 – 261.
    This is a philosophical paper in favor of the many-worlds interpretation of quantum theory. The necessity of introducing many worlds is explained by analyzing a neutron interference experiment. The concept of the “measure of existence of a world” is introduced and some difficulties with the issue of probability in the framework of the MWI are resolved.
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • Probability, self‐location, and quantum branching.Peter J. Lewis - 2009 - Philosophy of Science 76 (5):1009-1019.
    The main problem with the many‐worlds theory is that it is not clear how the notion of probability should be understood in a theory in which every possible outcome of a measurement actually occurs. In this paper, I argue for the following theses concerning the many‐worlds theory: If probability can be applied at all to measurement outcomes, it must function as a measure of an agent’s self‐location uncertainty. Such probabilities typically violate reflection. Many‐worlds branching does not have sufficient structure to (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The quantum mechanics of minds and worlds.Meir Hemmo - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):541-553.
    Download  
     
    Export citation  
     
    Bookmark  
  • Reply to Lewis: Metaphysics versus epistemology.David Papineau & Víctor Durà-Vilà - 2009 - Analysis 69 (1):89-91.
    Peter J. Lewis argued that the Everettian interpretation of quantum mechanics implies the unpopular halfer position in the Sleeping Beauty debate. We retorted that it is perfectly coherent to be an Everettian and an ordinary thirder. In a recent reply to our paper Lewis further clarifies the basis for his thinking. We think this brings out nicely where he goes wrong: he underestimates the importance of metaphysical considerations in determining rational credences.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • Language use in a branching universe.David Wallace - unknown
    I investigate the consequences for semantics, and in particular for the semantics of tense, if time is assumed to have a branching structure not out of metaphysical necessity (to solve some philosophical problem) but just as a contingent physical fact, as is suggested by a currently-popular approach to the interpretation of quantum mechanics.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Quantum probability and decision theory, revisited [2002 online-only paper].David Wallace - 2002
    An extended analysis is given of the program, originally suggested by Deutsch, of solving the probability problem in the Everett interpretation by means of decision theory. Deutsch's own proof is discussed, and alternatives are presented which are based upon different decision theories and upon Gleason's Theorem. It is argued that decision theory gives Everettians most or all of what they need from `probability'. Contact is made with Lewis's Principal Principle linking subjective credence with objective chance: an Everettian Principal Principle is (...)
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • On the Paradoxical Aspects of New Quantum Experiments.Lev Vaidman - 1994 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1994:211 - 217.
    Two recently proposed quantum experiments are analyzed. The first allows to find an object without "touching" it. The second allows to teleport quantum states, transmitting a very small amount of information. It is shown that in the standard approach these experiments are in conflict with the intuitive notions of causality and locality. It is argued that the situation is less paradoxical in the framework of the many-worlds interpretation of quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Evidence and Uncertainty in Everett’s Multiverse.Paul Tappenden - 2011 - British Journal for the Philosophy of Science 62 (1):99-123.
    How does it come about then, that great scientists such as Einstein, Schrödinger and De Broglie are nevertheless dissatisfied with the situation? Of course, all these objections are levelled not against the correctness of the formulae, but against their interpretation. [...] The lesson to be learned from what I have told of the origin of quantum mechanics is that probable refinements of mathematical methods will not suffice to produce a satisfactory theory, but that somewhere in our doctrine is hidden a (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Saunders and Wallace on Everett and Lewis.Paul Tappenden - 2008 - British Journal for the Philosophy of Science 59 (3):307-314.
    Simon Saunders and David Wallace attempt to use a modified form of David Lewis's analysis of personal fission to ground the claim that prior to undergoing Everett branching an informed subject can be uncertain about which outcome s/he will observe. I argue that a central assumption of this seductive idea is questionable despite appearing innocuous and that at the very least further argument is needed in support of it. CiteULike Connotea Del.icio.us What's this?
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Expectancy and rational action prior to personal fission.Paul Tappenden - 2011 - Philosophical Studies 153 (2):299-306.
    According to Sider’s stage theory a subject about to undergo personal fission should expect to experience each outcome simultaneously as distinct persons. How is the subject to make sense of this ? I argue that their most paradigmatically self-interested future-directed behaviour, betting for personal gain, ought to be exactly the same as in equivalent games of chance where the possible outcomes correspond to the fission output branches. So this novel form of expectancy, albeit strange, can be a reliable guide to (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A thirder and an Everettian: A reply to Lewis's 'Quantum Sleeping Beauty'.David Papineau & Víctor Durà-Vilà - 2009 - Analysis 69 (1):78-86.
    Since the publication of Elga's seminal paper in 2000, the Sleeping Beauty paradox has been the source of much discussion, particularly in this journal. Over the past few decades the Everettian interpretation of quantum mechanics 1 has also been much debated. There is an interesting connection between the way these two topics raise issues about subjective probability assignments.This connection is often alluded to, but as far as we know Peter J. Lewis's ‘Quantum Sleeping Beauty’ is the first attempt to examine (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Understanding Deutsch's probability in a deterministic universe.Hilary Greaves - 2004 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 35 (3):423-456.
    Difficulties over probability have often been considered fatal to the Everett interpretation of quantum mechanics. Here I argue that the Everettian can have everything she needs from `probability' without recourse to indeterminism, ignorance, primitive identity over time or subjective uncertainty: all she needs is a particular *rationality principle*. The decision-theoretic approach recently developed by Deutsch and Wallace claims to provide just such a principle. But, according to Wallace, decision theory is itself applicable only if the correct attitude to a future (...)
    Download  
     
    Export citation  
     
    Bookmark   89 citations  
  • Epistemology quantized: Circumstances in which we should come to believe in the Everett interpretation.David Wallace - 2006 - British Journal for the Philosophy of Science 57 (4):655-689.
    I consider exactly what is involved in a solution to the probability problem of the Everett interpretation, in the light of recent work on applying considerations from decision theory to that problem. I suggest an overall framework for understanding probability in a physical theory, and conclude that this framework, when applied to the Everett interpretation, yields the result that that interpretation satisfactorily solves the measurement problem. Introduction What is probability? 2.1 Objective probability and the Principal Principle 2.2 Three ways of (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Probability and nonlocality in many minds interpretations of quantum mechanics.Meir Hemmo & Itamar Pitowsky - 2003 - British Journal for the Philosophy of Science 54 (2):225-243.
    We argue that certain types of many minds (and many worlds) interpretations of quantum mechanics, e.g. Lockwood ([1996a]), Deutsch ([1985]) do not provide a coherent interpretation of the quantum mechanical probabilistic algorithm. By contrast, in Albert and Loewer's ([1988]) version of the many minds interpretation, there is a coherent interpretation of the quantum mechanical probabilities. We consider Albert and Loewer's probability interpretation in the context of Bell-type and GHZ-type states and argue that it implies a certain (weak) form of nonlocality. (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The Quantum Mechanics of Minds and Worlds.Meir Hemmo - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (3):541-553.
    Download  
     
    Export citation  
     
    Bookmark  
  • The Measurement Problem: Decoherence and Convivial Solipsism.Hervé Zwirn - 2016 - Foundations of Physics 46 (6):635-667.
    The problem of measurement is often considered an inconsistency inside the quantum formalism. Many attempts to solve it have been made since the inception of quantum mechanics. The form of these attempts depends on the philosophical position that their authors endorse. I will review some of them and analyze their relevance. The phenomenon of decoherence is often presented as a solution lying inside the pure quantum formalism and not demanding any particular philosophical assumption. Nevertheless, a widely debated question is to (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Nonlocality Versus Modified Realism.Hervé Zwirn - 2020 - Foundations of Physics 50 (1):1-26.
    A large number of physicists now admit that quantum mechanics is a non-local theory. The EPR argument and the many experiments showing the violation of Bell’s inequalities seem to have confirmed convincingly that quantum mechanics cannot be local. Nevertheless, this conclusion can only be drawn inside a standard realist framework assuming an ontic interpretation of the wave function and viewing the collapse of the wave function as a real change of the physical state of the system. We show that this (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Centering the Everett Interpretation.Isaac Wilhelm - 2022 - Philosophical Quarterly 72 (4):1019-1039.
    I propose an account of probability in the Everett interpretation of quantum mechanics. According to the account, probabilities are objective chances of centered propositions. As I show, the account solves a number of problems concerning the role of probability in the Everett interpretation. It also challenges an implicit assumption, concerning the aim and scope of fundamental physical theories, that is made throughout the philosophy of physics literature.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Worlds in the Everett interpretation.David Wallace - 2002 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 33 (4):637-661.
    This is a discussion of how we can understand the world-view given to us by the Everett interpretation of quantum mechanics, and in particular the role played by the concept of 'world'. The view presented is that we are entitled to use 'many-worlds' terminology even if the theory does not specify the worlds in the formalism; this is defended by means of an extensive analogy with the concept of an 'instant' or moment of time in relativity, with the lack of (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Everettian rationality: defending Deutsch's approach to probability in the Everett interpretation.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (3):415-439.
    An analysis is made of Deutsch's recent claim to have derived the Born rule from decision-theoretic assumptions. It is argued that Deutsch's proof must be understood in the explicit context of the Everett interpretation, and that in this context, it essentially succeeds. Some comments are made about the criticism of Deutsch's proof by Barnum, Caves, Finkelstein, Fuchs, and Schack; it is argued that the flaw which they point out in the proof does not apply if the Everett interpretation is assumed.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Everett and structure.David Wallace - 2003 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 34 (1):87-105.
    I address the problem of indefiniteness in quantum mechanics: the problem that the theory, without changes to its formalism, seems to predict that macroscopic quantities have no definite values. The Everett interpretation is often criticised along these lines, and I shall argue that much of this criticism rests on a false dichotomy: that the macroworld must either be written directly into the formalism or be regarded as somehow illusory. By means of analogy with other areas of physics, I develop the (...)
    Download  
     
    Export citation  
     
    Bookmark   129 citations  
  • Objective probability and the mind-body relation.Paul Tappenden - 2017 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 57:8-16.
    Objective probability in quantum mechanics is often thought to involve a stochastic process whereby an actual future is selected from a range of possibilities. Everett’s seminal idea is that all possible definite futures on the pointer basis exist as components of a macroscopic linear superposition. I demonstrate that these two conceptions of what is involved in quantum processes are linked via two alternative interpretations of the mind-body relation. This leads to a fission, rather than divergence, interpretation of Everettian theory and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Everettian theory as pure wave mechanics plus a no-collapse probability postulate.Paul Tappenden - 2019 - Synthese 198 (7):6375-6402.
    Proposed derivations of the Born rule for Everettian theory are controversial. I argue that they are unnecessary but may provide justification for a simplified version of the Principal Principle. It’s also unnecessary to replace Everett’s idea that a subject splits in measurement contexts with the idea that subjects have linear histories which partition Many worlds? Everett, quantum theory, and reality, Oxford University Press, Oxford, pp 181–205, 2010; Wallace in The emergent multiverse, Oxford University Press, Oxford, 2012, Chapter 7; Wilson in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Asymmetric Personal Identity.Theodore Sider - 2018 - Journal of the American Philosophical Association 4 (2):127-146.
    Personal identity is not always symmetric: even if I will not be a later person, the later person may have been me. What makes this possible is that the relations that are criterial of personal identity---such as memory and anticipation---are asymmetric and "count in favor of personal identity from one side only". Asymmetric personal identity can be accommodated by temporal counterpart theory but not by Lewisian overlapping aggregates of person stages. The question of uncertainty in cases of personal fission (and (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Self-locating Uncertainty and the Origin of Probability in Everettian Quantum Mechanics.Charles T. Sebens & Sean M. Carroll - 2016 - British Journal for the Philosophy of Science (1):axw004.
    A longstanding issue in attempts to understand the Everett (Many-Worlds) approach to quantum mechanics is the origin of the Born rule: why is the probability given by the square of the amplitude? Following Vaidman, we note that observers are in a position of self-locating uncertainty during the period between the branches of the wave function splitting via decoherence and the observer registering the outcome of the measurement. In this period it is tempting to regard each branch as equiprobable, but we (...)
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Delayed-choice entanglement swapping experiments: no evidence for timelike entanglement.Jørn Kløvfjell Mjelva - 2024 - Studies in History and Philosophy of Science 105 (C):138-148.
    In recent years, there has been a growing interest in the possibility of temporal nonlocality, mirroring the spatial nonlocality supposedly evidenced by the Bell correlations. In this context, Glick (2019) has argued that timelike entanglement and temporal nonlocality is demonstrated in delayed-choice entanglement swapping (DCES) experiments, like that of Ma et al. (2012), Megidish et al. (2013) and Hensen et al. (2015). I will argue that a careful analysis of these experiments shows that they in fact display nothing more than (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • In defence of the self-location uncertainty account of probability in the many-worlds interpretation.Kelvin J. McQueen & Lev Vaidman - 2019 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 66 (C):14-23.
    We defend the many-worlds interpretation of quantum mechanics against the objection that it cannot explain why measurement outcomes are predicted by the Born probability rule. We understand quantum probabilities in terms of an observer's self-location probabilities. We formulate a probability postulate for the MWI: the probability of self-location in a world with a given set of outcomes is the absolute square of that world's amplitude. We provide a proof of this postulate, which assumes the quantum formalism and two principles concerning (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Multiplicity in Everett׳s interpretation of quantum mechanics.Louis Marchildon - 2015 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 52 (Part B):274-284.
    Download  
     
    Export citation  
     
    Bookmark   2 citations