Switch to: References

Add citations

You must login to add citations.
  1. The Ideals Program in Algorithmic Fairness.Rush T. Stewart - forthcoming - AI and Society:1-11.
    I consider statistical criteria of algorithmic fairness from the perspective of the _ideals_ of fairness to which these criteria are committed. I distinguish and describe three theoretical roles such ideals might play. The usefulness of this program is illustrated by taking Base Rate Tracking and its ratio variant as a case study. I identify and compare the ideals of these two criteria, then consider them in each of the aforementioned three roles for ideals. This ideals program may present a way (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the site of predictive justice.Seth Lazar & Jake Stone - 2024 - Noûs 58 (3):730-754.
    Optimism about our ability to enhance societal decision‐making by leaning on Machine Learning (ML) for cheap, accurate predictions has palled in recent years, as these ‘cheap’ predictions have come at significant social cost, contributing to systematic harms suffered by already disadvantaged populations. But what precisely goes wrong when ML goes wrong? We argue that, as well as more obvious concerns about the downstream effects of ML‐based decision‐making, there can be moral grounds for the criticism of these predictions themselves. We introduce (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • What’s Impossible about Algorithmic Fairness?Otto Sahlgren - 2024 - Philosophy and Technology 37 (4):1-23.
    The now well-known impossibility results of algorithmic fairness demonstrate that an error-prone predictive model cannot simultaneously satisfy two plausible conditions for group fairness apart from exceptional circumstances where groups exhibit equal base rates. The results sparked, and continue to shape, lively debates surrounding algorithmic fairness conditions and the very possibility of building fair predictive models. This article, first, highlights three underlying points of disagreement in these debates, which have led to diverging assessments of the feasibility of fairness in prediction-based decision-making. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation