Switch to: References

Add citations

You must login to add citations.
  1. Dianoia Left and Right.S. Pollard - 2013 - Philosophia Mathematica 21 (3):309-322.
    In Plato's Phaedrus, Socrates offers two speeches, the first portraying madness as mere disease, the second celebrating madness as divine inspiration. Each speech is correct, says Socrates, though neither is complete. The two kinds of madness are like the left and right sides of a living body: no account that focuses on just one half can be adequate. In a recent paper, Hugh Benson gives a left-handed speech about a psychic condition endemic among mathematicians: dianoia. Benson acknowledges that his account (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Diagrammatic reasoning in Frege’s Begriffsschrift.Danielle Macbeth - 2012 - Synthese 186 (1):289-314.
    In Part III of his 1879 logic Frege proves a theorem in the theory of sequences on the basis of four definitions. He claims in Grundlagen that this proof, despite being strictly deductive, constitutes a real extension of our knowledge, that it is ampliative rather than merely explicative. Frege furthermore connects this idea of ampliative deductive proof to what he thinks of as a fruitful definition, one that draws new lines. My aim is to show that we can make good (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Problemas de la independencia en el realismo matemático.Mauricio Algalan Meneses - 2015 - Dissertation, Universidad Panamericana Sede México
    Existen diversos tipos de realismo matemático. Desde una perspectiva filosófica, en la mayoría de los casos, los realistas asumen algunas o todas de las siguientes tesis: 1) Existen los objetos matemáticos; 2) Los objetos matemáticos son abstractos y 3)Los objetos matemáticos son independientes a agentes, lenguajes y prácticas. En este trabajo discutiré algunos problemas con respecto al tercer punto, referente a la independencia entre el lenguaje y los objetos matemáticos. La independencia del lenguaje implica que, sin importar el lenguaje que (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Forms and Roles of Diagrams in Knot Theory.Silvia De Toffoli & Valeria Giardino - 2014 - Erkenntnis 79 (4):829-842.
    The aim of this article is to explain why knot diagrams are an effective notation in topology. Their cognitive features and epistemic roles will be assessed. First, it will be argued that different interpretations of a figure give rise to different diagrams and as a consequence various levels of representation for knots will be identified. Second, it will be shown that knot diagrams are dynamic by pointing at the moves which are commonly applied to them. For this reason, experts must (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Notational Differences.Francesco Bellucci & Ahti-Veikko Pietarinen - 2020 - Acta Analytica 35 (2):289-314.
    Expressively equivalent logical languages can enunciate logical notions in notationally diversified ways. Frege’s Begriffsschrift, Peirce’s Existential Graphs, and the notations presented by Wittgenstein in the Tractatus all express the sentential fragment of classical logic, each in its own way. In what sense do expressively equivalent notations differ? According to recent interpretations, Begriffsschrift and Existential Graphs differ from other logical notations because they are capable of “multiple readings.” We refute this interpretation by showing that there are at least three different kinds (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Manipulative imagination: how to move things around in mathematics.Valeria Giardino - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (2):345-360.
    In the first part of the paper, previous work about embodied mathematics and the practice of topology will be presented. According to the proposed view, in order to become experts, topologists have to learn how to use manipulative imagination: representations are cognitive tools whose functioning depends from pre-existing cognitive abilities and from specific training. In the second part of the paper, the notion of imagination as “make-believe” is discussed to give an account of cognitive tools in mathematics as props; to (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations