Switch to: References

Add citations

You must login to add citations.
  1. Reconciling Rigor and Intuition.Silvia De Toffoli - 2020 - Erkenntnis 86 (6):1783-1802.
    Criteria of acceptability for mathematical proofs are field-dependent. In topology, though not in most other domains, it is sometimes acceptable to appeal to visual intuition to support inferential steps. In previous work :829–842, 2014; Lolli, Panza, Venturi From logic to practice, Springer, Berlin, 2015; Larvor Mathematical cultures, Springer, Berlin, 2016) my co-author and I aimed at spelling out how topological proofs work on their own terms, without appealing to formal proofs which might be associated with them. In this article, I (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Audience role in mathematical proof development.Zoe Ashton - 2020 - Synthese 198 (Suppl 26):6251-6275.
    The role of audiences in mathematical proof has largely been neglected, in part due to misconceptions like those in Perelman and Olbrechts-Tyteca which bar mathematical proofs from bearing reflections of audience consideration. In this paper, I argue that mathematical proof is typically argumentation and that a mathematician develops a proof with his universal audience in mind. In so doing, he creates a proof which reflects the standards of reasonableness embodied in his universal audience. Given this framework, we can better understand (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mathematical cognition and enculturation: introduction to the Synthese special issue.Markus Pantsar - 2020 - Synthese 197 (9):3647-3655.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Reliability of mathematical inference.Jeremy Avigad - 2020 - Synthese 198 (8):7377-7399.
    Of all the demands that mathematics imposes on its practitioners, one of the most fundamental is that proofs ought to be correct. It has been common since the turn of the twentieth century to take correctness to be underwritten by the existence of formal derivations in a suitable axiomatic foundation, but then it is hard to see how this normative standard can be met, given the differences between informal proofs and formal derivations, and given the inherent fragility and complexity of (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • An Inquiry into the Practice of Proving in Low-Dimensional Topology.Silvia De Toffoli & Valeria Giardino - 2014 - In Giorgio Venturi, Marco Panza & Gabriele Lolli (eds.), From Logic to Practice: Italian Studies in the Philosophy of Mathematics. Cham: Springer International Publishing. pp. 315-336.
    The aim of this article is to investigate specific aspects connected with visualization in the practice of a mathematical subfield: low-dimensional topology. Through a case study, it will be established that visualization can play an epistemic role. The background assumption is that the consideration of the actual practice of mathematics is relevant to address epistemological issues. It will be shown that in low-dimensional topology, justifications can be based on sequences of pictures. Three theses will be defended. First, the representations used (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • ‘Chasing’ the diagram—the use of visualizations in algebraic reasoning.Silvia de Toffoli - 2017 - Review of Symbolic Logic 10 (1):158-186.
    The aim of this article is to investigate the roles of commutative diagrams (CDs) in a specific mathematical domain, and to unveil the reasons underlying their effectiveness as a mathematical notation; this will be done through a case study. It will be shown that CDs do not depict spatial relations, but represent mathematical structures. CDs will be interpreted as a hybrid notation that goes beyond the traditional bipartition of mathematical representations into diagrammatic and linguistic. It will be argued that one (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Envisioning Transformations – The Practice of Topology.Silvia De Toffoli & Valeria Giardino - 2016 - In Brendan Larvor (ed.), Mathematical Cultures: The London Meetings 2012-2014. Springer International Publishing. pp. 25-50.
    The objective of this article is twofold. First, a methodological issue is addressed. It is pointed out that even if philosophers of mathematics have been recently more and more concerned with the practice of mathematics, there is still a need for a sharp definition of what the targets of a philosophy of mathematical practice should be. Three possible objects of inquiry are put forward: (1) the collective dimension of the practice of mathematics; (2) the cognitives capacities requested to the practitioners; (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Epistemological Subject(s) of Mathematics.Silvia De Toffoli - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer. pp. 1-27.
    Paying attention to the inner workings of mathematicians has led to a proliferation of new themes in the philosophy of mathematics. Several of these have to do with epistemology. Philosophers of mathematical practice, however, have not (yet) systematically engaged with general (analytic) epistemology. To be sure, there are some exceptions, but they are few and far between. In this chapter, I offer an explanation of why this might be the case and show how the situation could be remedied. I contend (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the potential to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Entering the valley of formalism: trends and changes in mathematicians’ publication practice—1885 to 2015.Mikkel Willum Johansen & Josefine Lomholt Pallavicini - 2022 - Synthese 200 (3):1-23.
    Over the last century, there have been considerable variations in the frequency of use and types of diagrams used in mathematical publications. In order to track these changes, we developed a method enabling large-scale quantitative analysis of mathematical publications to investigate the number and types of diagrams published in three leading mathematical journals in the period from 1885 to 2015. The results show that diagrams were relatively common at the beginning of the period under investigation. However, beginning in 1910, they (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Who's Afraid of Mathematical Diagrams?Silvia De Toffoli - 2023 - Philosophers' Imprint 23 (1).
    Mathematical diagrams are frequently used in contemporary mathematics. They are, however, widely seen as not contributing to the justificatory force of proofs: they are considered to be either mere illustrations or shorthand for non-diagrammatic expressions. Moreover, when they are used inferentially, they are seen as threatening the reliability of proofs. In this paper, I examine certain examples of diagrams that resist this type of dismissive characterization. By presenting two diagrammatic proofs, one from topology and one from algebra, I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance for a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematical Explanation in Practice.Ellen Lehet - 2021 - Axiomathes 31 (5):553-574.
    The connection between understanding and explanation has recently been of interest to philosophers. Inglis and Mejía-Ramos (Synthese, 2019) propose that within mathematics, we should accept a functional account of explanation that characterizes explanations as those things that produce understanding. In this paper, I start with the assumption that this view of mathematical explanation is correct and consider what we can consequently learn about mathematical explanation. I argue that this view of explanation suggests that we should shift the question of explanation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematical practice: A primer for mathematics educators.Yacin Hamami & Rebecca Morris - 2020 - ZDM Mathematics Education 52:1113–1126.
    In recent years, philosophical work directly concerned with the practice of mathematics has intensified, giving rise to a movement known as the philosophy of mathematical practice . In this paper we offer a survey of this movement aimed at mathematics educators. We first describe the core questions philosophers of mathematical practice investigate as well as the philosophical methods they use to tackle them. We then provide a selective overview of work in the philosophy of mathematical practice covering topics including the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Material representations in mathematical research practice.Mikkel W. Johansen & Morten Misfeldt - 2020 - Synthese 197 (9):3721-3741.
    Mathematicians’ use of external representations, such as symbols and diagrams, constitutes an important focal point in current philosophical attempts to understand mathematical practice. In this paper, we add to this understanding by presenting and analyzing how research mathematicians use and interact with external representations. The empirical basis of the article consists of a qualitative interview study we conducted with active research mathematicians. In our analysis of the empirical material, we primarily used the empirically based frameworks provided by distributed cognition and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2019 - Synthese 196 (7):2715-2736.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)From Euclidean geometry to knots and nets.Brendan Larvor - 2017 - Synthese:1-22.
    This paper assumes the success of arguments against the view that informal mathematical proofs secure rational conviction in virtue of their relations with corresponding formal derivations. This assumption entails a need for an alternative account of the logic of informal mathematical proofs. Following examination of case studies by Manders, De Toffoli and Giardino, Leitgeb, Feferman and others, this paper proposes a framework for analysing those informal proofs that appeal to the perception or modification of diagrams or to the inspection or (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Diagrams.Sun-Joo Shin - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Meditating and Inquiring with Imagination: Leibniz, Lambert, and Kant on the Cognitive Value of Diagrams.Lucia Oliveri - 2024 - History and Philosophy of Logic 45:1-19.
    Reasoning with diagrams is considered to be a peculiar form of reasoning. Diagrams are often associated with imagistic representations conveyed by spatial arrangements of lines, points, figures, or letters that can be manipulated to obtain knowledge on a subject matter. Reasoning with diagrams is not just ‘peculiar’ because reasoners use spatially arranged characters to obtain knowledge – diagrams apparently have cognitive surplus: they enable a quasi-intuitive form of knowledge. The present paper analyses the issue of diagrams’ cognitive value by enquiring (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Role of Imagination and Anticipation in the Acceptance of Computability Proofs: A Challenge to the Standard Account of Rigor.Keith Weber - 2022 - Philosophia Mathematica 30 (3):343-368.
    In a 2022 paper, Hamami claimed that the orthodox view in mathematics is that a proof is rigorous if it can be translated into a derivation. Hamami then developed a descriptive account that explains how mathematicians check proofs for rigor in this sense and how they develop the capacity to do so. By exploring introductory texts in computability theory, we demonstrate that Hamami’s descriptive account does not accord with actual mathematical practice with respect to computability theory. We argue instead for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Certain Modern Ideas and Methods: “Geometric Reality” in the Mathematics of Charlotte Angas Scott.Jemma Lorenat - 2020 - Review of Symbolic Logic 13 (4):681-719.
    Charlotte Angas Scott (1858–1932) was an internationally renowned geometer, the first British woman to earn a doctorate in mathematics, and the chair of the Bryn Mawr mathematics department for forty years. There she helped shape the burgeoning mathematics community in the United States. Scott often motivated her research as providing a “geometric treatment” of results that had previously been derived algebraically. The adjective “geometric” likely entailed many things for Scott, from her careful illustration of diagrams to her choice of references (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Non-deductive methods in mathematics.Alan Baker - 2010 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Drawing on the imagination: The limits of illustrated figures in nineteenth-century geometry.Jemma Lorenat - 2020 - Studies in History and Philosophy of Science Part A 82:75-87.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Paper, Plaster, Strings: Exploratory Material Mathematical Models between the 1860s and 1930s.Michael Friedman - 2021 - Perspectives on Science 29 (4):436-467.
    Does the materiality of a three-dimensional model have an effect on how this model operates in an exploratory way, how it prompts discovery of new mathematical results? Material mathematical models were produced and used during the second half of the nineteenth century, visualizing mathematical objects, such as curves and surfaces—and these were produced from a variety of materials: paper, cardboard, plaster, strings, wood. However, the question, whether their materiality influenced the status of these models—considered as exploratory, technical, or representational—was hardly (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction to Special Issue: Aesthetics in Mathematics†.Angela Breitenbach & Davide Rizza - 2018 - Philosophia Mathematica 26 (2):153-160.
    Download  
     
    Export citation  
     
    Bookmark  
  • Instructions and constructions in set theory proofs.Keith Weber - 2023 - Synthese 202 (2):1-17.
    Traditional models of mathematical proof describe proofs as sequences of assertion where each assertion is a claim about mathematical objects. However, Tanswell observed that in practice, many proofs do not follow these models. Proofs often contain imperatives, and other instructions for the reader to perform mathematical actions. The purpose of this paper is to examine the role of instructions in proofs by systematically analyzing how instructions are used in Kunen’s Set theory: An introduction to independence proofs, a widely used graduate (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Textual materiality and abstraction in mathematics.Anna Kiel Steensen, Mikkel Willum Johansen & Morten Misfeldt - 2022 - Science in Context 35 (1):81-101.
    In this paper, we wish to explore the role that textual representations play in the creation of new mathematical objects. We do so by analyzing texts by Joseph-Louis Lagrange (1736–1813) and Évariste Galois (1811–1832), which are seen as central to the historical development of the mathematical concept of groups. In our analysis, we consider how the material features of representations relate to the changes in conceptualization that we see in the texts.Against this backdrop, we discuss the idea that new mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On the heuristic power of mathematical representations.Emiliano Ippoliti - 2022 - Synthese 200 (5):1-28.
    I argue that mathematical representations can have heuristic power since their construction can be ampliative. To this end, I examine how a representation introduces elements and properties into the represented object that it does not contain at the beginning of its construction, and how it guides the manipulations of the represented object in ways that restructure its components by gradually adding new pieces of information to produce a hypothesis in order to solve a problem.In addition, I defend an ‘inferential’ approach (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The material reasoning of folding paper.Michael Friedman & Colin Jakob Rittberg - 2021 - Synthese 198 (S26):6333-6367.
    This paper inquires the ways in which paper folding constitutes a mathematical practice and may prompt a mathematical culture. To do this, we first present and investigate the common mathematical activities shared by this culture, i.e. we present mathematical paper folding as a material reasoning practice. We show that the patterns of mathematical activity observed in mathematical paper folding are, at least since the end of the nineteenth century, sufficiently stable to be considered as a practice. Moreover, we will argue (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to notate a crossing of strings? On Modesto Dedò’s notation of braids.Michael Friedman - 2020 - Archive for History of Exact Sciences 74 (4):281-312.
    As is well known, it was only in 1926 that a comprehensive mathematical theory of braids was published—that of Emil Artin. That said, braids had been researched mathematically before Artin’s treatment: Alexandre Theophile Vandermonde, Carl Friedrich Gauß and Peter Guthrie Tait had all attempted to introduce notations for braids. Nevertheless, it was only Artin’s approach that proved to be successful. Though the historical reasons for the success of Artin’s approach are known, a question arises as to whether other approaches to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation