Switch to: References

Add citations

You must login to add citations.
  1. Axioms in Mathematical Practice.Dirk Schlimm - 2013 - Philosophia Mathematica 21 (1):37-92.
    On the basis of a wide range of historical examples various features of axioms are discussed in relation to their use in mathematical practice. A very general framework for this discussion is provided, and it is argued that axioms can play many roles in mathematics and that viewing them as self-evident truths does not do justice to the ways in which mathematicians employ axioms. Possible origins of axioms and criteria for choosing axioms are also examined. The distinctions introduced aim at (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Does mathematics need new axioms.Solomon Feferman, Harvey M. Friedman, Penelope Maddy & John R. Steel - 1999 - Bulletin of Symbolic Logic 6 (4):401-446.
    Part of the ambiguity lies in the various points of view from which this question might be considered. The crudest di erence lies between the point of view of the working mathematician and that of the logician concerned with the foundations of mathematics. Now some of my fellow mathematical logicians might protest this distinction, since they consider themselves to be just more of those \working mathematicians". Certainly, modern logic has established itself as a very respectable branch of mathematics, and there (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • Naturalism, Truth and Beauty in Mathematics.Matthew E. Moore - 2007 - Philosophia Mathematica 15 (2):141-165.
    Can a scientific naturalist be a mathematical realist? I review some arguments, derived largely from the writings of Penelope Maddy, for a negative answer. The rejoinder from the realist side is that the irrealist cannot explain, as well as the realist can, why a naturalist should grant the mathematician the degree of methodological autonomy that the irrealist's own arguments require. Thus a naturalist, as such, has at least as much reason to embrace mathematical realism as to embrace irrealism.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematical existence.Penelope Maddy - 2005 - Bulletin of Symbolic Logic 11 (3):351-376.
    Despite some discomfort with this grandly philosophical topic, I do in fact hope to address a venerable pair of philosophical chestnuts: mathematical truth and existence. My plan is to set out three possible stands on these issues, for an exercise in compare and contrast.' A word of warning, though, to philosophical purists (and perhaps of comfort to more mathematical readers): I will explore these philosophical positions with an eye to their interconnections with some concrete issues of set theoretic method.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Naturalizing dissension.Matthew E. Moore - 2006 - Pacific Philosophical Quarterly 87 (3):325–334.
    Mathematical naturalism forbids philosophical interventions in mathematical practice. This principle, strictly construed, places severe constraints on legitimate philosophizing about mathematics; it is also arguably incompatible with mathematical realism. One argument for the latter conclusion charges the realist with inability to take a truly naturalistic view of the Gödel Program in set theory. This argument founders on the disagreement among mathematicians about that program's prospects for success. It also turns out that when disagreements run this deep it is counterproductive to take (...)
    Download  
     
    Export citation  
     
    Bookmark