- Global singularization and the failure of SCH.Radek Honzik - 2010 - Annals of Pure and Applied Logic 161 (7):895-915.details
|
|
Weakly measurable cardinals.Jason A. Schanker - 2011 - Mathematical Logic Quarterly 57 (3):266-280.details
|
|
Level by level equivalence and strong compactness.Arthur W. Apter - 2004 - Mathematical Logic Quarterly 50 (1):51.details
|
|
Radin forcing and its iterations.John Krueger - 2007 - Archive for Mathematical Logic 46 (3-4):223-252.details
|
|
A Characterization of Generalized Příkrý Sequences.Gunter Fuchs - 2005 - Archive for Mathematical Logic 44 (8):935-971.details
|
|
Indestructible strong compactness but not supercompactness.Arthur W. Apter, Moti Gitik & Grigor Sargsyan - 2012 - Annals of Pure and Applied Logic 163 (9):1237-1242.details
|
|
Indestructibility and the level-by-level agreement between strong compactness and supercompactness.Arthur W. Apter & Joel David Hamkins - 2002 - Journal of Symbolic Logic 67 (2):820-840.details
|
|
Measurability and degrees of strong compactness.Arthur W. Apter - 1981 - Journal of Symbolic Logic 46 (2):249-254.details
|
|
(1 other version)Nonsplitting subset of κ.Moti Gitik - 1985 - Journal of Symbolic Logic 50 (4):881-894.details
|
|
On the indestructibility aspects of identity crisis.Grigor Sargsyan - 2009 - Archive for Mathematical Logic 48 (6):493-513.details
|
|
Identity crises and strong compactness III: Woodin cardinals. [REVIEW]Arthur W. Apter & Grigor Sargsyan - 2006 - Archive for Mathematical Logic 45 (3):307-322.details
|
|
Level by level inequivalence beyond measurability.Arthur W. Apter - 2011 - Archive for Mathematical Logic 50 (7-8):707-712.details
|
|
Abstract logic and set theory. II. large cardinals.Jouko Väänänen - 1982 - Journal of Symbolic Logic 47 (2):335-346.details
|
|
Some structural results concerning supercompact cardinals.Arthur Apter - 2001 - Journal of Symbolic Logic 66 (4):1919-1927.details
|
|
Closed and unbounded classes and the härtig quantifier model.Philip D. Welch - 2022 - Journal of Symbolic Logic 87 (2):564-584.details
|
|
Killing the $GCH$ everywhere with a single real.Sy-David Friedman & Mohammad Golshani - 2013 - Journal of Symbolic Logic 78 (3):803-823.details
|
|
Forcing Magidor iteration over a core model below $${0^{\P}}$$ 0 ¶.Omer Ben-Neria - 2014 - Archive for Mathematical Logic 53 (3-4):367-384.details
|
|
Tall cardinals.Joel D. Hamkins - 2009 - Mathematical Logic Quarterly 55 (1):68-86.details
|
|
Forcing the Least Measurable to Violate GCH.Arthur W. Apter - 1999 - Mathematical Logic Quarterly 45 (4):551-560.details
|
|
On löwenheim–skolem–tarski numbers for extensions of first order logic.Menachem Magidor & Jouko Väänänen - 2011 - Journal of Mathematical Logic 11 (1):87-113.details
|
|
Identity crises and strong compactness.Arthur Apter & James Cummings - 2000 - Journal of Symbolic Logic 65 (4):1895-1910.details
|
|
Normal measures on a tall cardinal.Arthur W. Apter & James Cummings - 2019 - Journal of Symbolic Logic 84 (1):178-204.details
|
|
Strong Compactness and Stationary Sets.John Krueger - 2005 - Journal of Symbolic Logic 70 (3):767 - 777.details
|
|
Woodin for strong compactness cardinals.Stamatis Dimopoulos - 2019 - Journal of Symbolic Logic 84 (1):301-319.details
|
|
The least weakly compact cardinal can be unfoldable, weakly measurable and nearly $${\theta}$$ θ -supercompact.Brent Cody, Moti Gitik, Joel David Hamkins & Jason A. Schanker - 2015 - Archive for Mathematical Logic 54 (5-6):491-510.details
|
|
Many Normal Measures.Shimon Garti - 2014 - Notre Dame Journal of Formal Logic 55 (3):349-357.details
|
|
The structure of the Mitchell order – II.Omer Ben-Neria - 2015 - Annals of Pure and Applied Logic 166 (12):1407-1432.details
|
|
Σ‐algebraically compact modules and ‐compact cardinals.Jan Šaroch - 2015 - Mathematical Logic Quarterly 61 (3):196-201.details
|
|
The least measurable can be strongly compact and indestructible.Arthur Apter & Moti Gitik - 1998 - Journal of Symbolic Logic 63 (4):1404-1412.details
|
|
Universal partial indestructibility and strong compactness.Arthur W. Apter - 2005 - Mathematical Logic Quarterly 51 (5):524-531.details
|
|
Strongly compact cardinals and the continuum function.Arthur W. Apter, Stamatis Dimopoulos & Toshimichi Usuba - 2021 - Annals of Pure and Applied Logic 172 (9):103013.details
|
|
Strong Compactness, Square, Gch, and Woodin Cardinals.Arthur W. Apter - 2024 - Journal of Symbolic Logic 89 (3):1180-1188.details
|
|
Patterns of compact cardinals.Arthur W. Apter - 1997 - Annals of Pure and Applied Logic 89 (2-3):101-115.details
|
|
Supercompactness and level by level equivalence are compatible with indestructibility for strong compactness.Arthur W. Apter - 2007 - Archive for Mathematical Logic 46 (3-4):155-163.details
|
|
(1 other version)More on the Least Strongly Compact Cardinal.Arthur W. Apter - 1997 - Mathematical Logic Quarterly 43 (3):427-430.details
|
|
Indestructibility when the first two measurable cardinals are strongly compact.Arthur W. Apter - 2022 - Journal of Symbolic Logic 87 (1):214-227.details
|
|
Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.details
|
|
Diamond, square, and level by level equivalence.Arthur W. Apter - 2005 - Archive for Mathematical Logic 44 (3):387-395.details
|
|
Exactly controlling the non-supercompact strongly compact cardinals.Arthur W. Apter & Joel David Hamkins - 2003 - Journal of Symbolic Logic 68 (2):669-688.details
|
|
Failure of GCH and the level by level equivalence between strong compactness and supercompactness.Arthur W. Apter - 2003 - Mathematical Logic Quarterly 49 (6):587.details
|
|
All uncountable cardinals in the Gitik model are almost Ramsey and carry Rowbottom filters.Arthur W. Apter, Ioanna M. Dimitriou & Peter Koepke - 2016 - Mathematical Logic Quarterly 62 (3):225-231.details
|
|
A new proof of a theorem of Magidor.Arthur W. Apter - 2000 - Archive for Mathematical Logic 39 (3):209-211.details
|
|
A note on tall cardinals and level by level equivalence.Arthur W. Apter - 2016 - Mathematical Logic Quarterly 62 (1-2):128-132.details
|
|
Some results concerning strongly compact cardinals.Yoshihiro Abe - 1985 - Journal of Symbolic Logic 50 (4):874-880.details
|
|
Rado’s Conjecture and its Baire version.Jing Zhang - 2019 - Journal of Mathematical Logic 20 (1):1950015.details
|
|
Extended ultrapowers and the vopěnka-hrbáček theorem without choice.Mitchell Spector - 1991 - Journal of Symbolic Logic 56 (2):592-607.details
|
|
Co-critical points of elementary embeddings.Michael Sheard - 1985 - Journal of Symbolic Logic 50 (1):220-226.details
|
|
Partial near supercompactness.Jason Aaron Schanker - 2013 - Annals of Pure and Applied Logic 164 (2):67-85.details
|
|
(1 other version)Semistationary and stationary reflection.Hiroshi Sakai - 2008 - Journal of Symbolic Logic 73 (1):181-192.details
|
|
Contributions to the Theory of Large Cardinals through the Method of Forcing.Alejandro Poveda - 2021 - Bulletin of Symbolic Logic 27 (2):221-222.details
|
|