Switch to: References

Citations of:

Husserl and Hilbert on completeness

Synthese 110 (1):37-56 (1997)

Add citations

You must login to add citations.
  1. Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Logic and philosophy of mathematics in the early Husserl.Stefania Centrone - 2009 - New York: Springer.
    This volume will be of particular interest to researchers working in the history, and in the philosophy, of logic and mathematics, and more generally, to ...
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (1 other version)Completeness and Categoricity. Part I: Nineteenth-century Axiomatics to Twentieth-century Metalogic.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    This paper is the first in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   52 citations  
  • (1 other version)Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):1-30.
    Steve Awodey and Erich H. Reck. Completeness and Categoricity: 19th Century Axiomatics to 21st Century Senatics.
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Completeness and categoricty, part II: 20th century metalogic to 21st century semantics.Steve Awodey & Erich H. Reck - 2002 - History and Philosophy of Logic 23 (1):77-92.
    This paper is the second in a two-part series in which we discuss several notions of completeness for systems of mathematical axioms, with special focus on their interrelations and historical origins in the development of the axiomatic method. We argue that, both from historical and logical points of view, higher-order logic is an appropriate framework for considering such notions, and we consider some open questions in higher-order axiomatics. In addition, we indicate how one can fruitfully extend the usual set-theoretic semantics (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Completeness before Post: Bernays, Hilbert, and the development of propositional logic.Richard Zach - 1999 - Bulletin of Symbolic Logic 5 (3):331-366.
    Some of the most important developments of symbolic logic took place in the 1920s. Foremost among them are the distinction between syntax and semantics and the formulation of questions of completeness and decidability of logical systems. David Hilbert and his students played a very important part in these developments. Their contributions can be traced to unpublished lecture notes and other manuscripts by Hilbert and Bernays dating to the period 1917-1923. The aim of this paper is to describe these results, focussing (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Husserl’s philosophy of mathematics: its origin and relevance. [REVIEW]Guillermo E. Rosado Haddock - 2006 - Husserl Studies 22 (3):193-222.
    This paper offers an exposition of Husserl's mature philosophy of mathematics, expounded for the first time in Logische Untersuchungen and maintained without any essential change throughout the rest of his life. It is shown that Husserl's views on mathematics were strongly influenced by Riemann, and had clear affinities with the much later Bourbaki school.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Stefania Centrone. Logic and Philosophy of Mathematics in the Early Husserl. Synthese Library 345. Dordrecht: Springer, 2010. Pp. xxii + 232. ISBN 978-90-481-3245-4. [REVIEW]Mirja Hartimo - 2010 - Philosophia Mathematica 18 (3):344-349.
    It is beginning to be rather well known that Edmund Husserl, the founder of phenomenological philosophy, was originally a mathematician; he studied with Weierstrass and Kronecker in Berlin, wrote his doctoral dissertation on the calculus of variations, and was then a colleague of Cantor in Halle until he moved to the Göttingen of Hilbert and Klein in 1901. Much of Husserl’s writing prior to 1901 was about mathematics, and arguably the origin of phenomenology was in Husserl’s attempts to give philosophical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Completeness: From Husserl to Carnap.Víctor Aranda - 2022 - Logica Universalis 16 (1):57-83.
    In his Doppelvortrag, Edmund Husserl introduced two concepts of “definiteness” which have been interpreted as a vindication of his role in the history of completeness. Some commentators defended that the meaning of these notions should be understood as categoricity, while other scholars believed that it is closer to syntactic completeness. A detailed study of the early twentieth-century axiomatics and Husserl’s Doppelvortrag shows, however, that many concepts of completeness were conflated as equivalent. Although “absolute definiteness” was principally an attempt to characterize (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Husserl, Model Theory, and Formal Essences.Kyle Banick - 2020 - Husserl Studies 37 (2):103-125.
    Husserl’s philosophy of mathematics, his metatheory, and his transcendental phenomenology have a sophisticated and systematic interrelation that remains relevant for questions of ontology today. It is well established that Husserl anticipated many aspects of model theory. I focus on this aspect of Husserl’s philosophy in order to argue that Thomasson’s recent pleonastic reconstruction of Husserl’s approach to essences is incompatible with Husserl’s philosophy as a whole. According to the pleonastic approach, Husserl can appeal to essences in the absence of a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Husserl on completeness, definitely.Mirja Hartimo - 2018 - Synthese 195 (4):1509-1527.
    The paper discusses Husserl’s notion of definiteness as presented in his Göttingen Mathematical Society Double Lecture of 1901 as a defense of two, in many cases incompatible, ideals, namely full characterizability of the domain, i.e., categoricity, and its syntactic completeness. These two ideals are manifest already in Husserl’s discussion of pure logic in the Prolegomena: The full characterizability is related to Husserl’s attempt to capture the interconnection of things, whereas syntactic completeness relates to the interconnection of truths. In the Prolegomena (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Husserls manuskripte zu seinem göttinger doppelvortrag Von 1901.Elisabeth Schuhmann & Karl Schuhmann - 2001 - Husserl Studies 17 (2):87-123.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)Toward a Phenomenological Epistemology of Mathematical Logic.Manuel Gustavo Isaac - 2018 - Synthèse: An International Journal for Epistemology, Methodology and Philosophy of Science 195 (2):863-874.
    This paper deals with Husserl’s idea of pure logic as it is coined in the Logical Investigations. First, it exposes the formation of pure logic around a conception of completeness ; then, it presents intentionality as the keystone of such a structuring ; and finally, it provides a systematic reconstruction of pure logic from the semiotic standpoint of intentionality. In this way, it establishes Husserlian pure logic as a phenomenological epistemology of mathematical logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • Widersinn in Husserl’s Pure Logic.Manuel Gustavo Isaac - 2016 - Logica Universalis 10 (4):419-430.
    The purpose of this paper is to provide a unitary typology for the incompatibilities of meanings at stake on different levels of Husserlian pure logic—namely, between systems of axioms and pure morphology of meanings; I show that they perfectly match by converging on the notion of Widersinn.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • L'idée de la logique formelle dans les appendices VI à X du volume 12 des Husserliana.Manuel Gustavo Isaac - 2015 - History and Philosophy of Logic 36 (4):321-345.
    Au terme des Prolégomènes, Husserl formule son idée de la logique pure en la structurant sur deux niveaux: l'un, supérieur, de la logique formelle fondé transcendantalement et d'un point de vue épistémologique par l'autre, inférieur, d'une morphologie des catégories. Seul le second de ces deux niveaux est traité dans les Recherches logiques, tandis que les travaux théoriques en logique formelle menés par Husserl à la même époque en paraissent plutôt indépendants. Cet article est consacré à ces travaux tels que recueillis (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The place of description in phenomenology’s naturalization.Mark W. Brown - 2008 - Phenomenology and the Cognitive Sciences 7 (4):563-583.
    The recent move to naturalize phenomenology through a mathematical protocol is a significant advance in consciousness research. It enables a new and fruitful level of dialogue between the cognitive sciences and phenomenology of such a nuanced kind that it also prompts advancement in our phenomenological analyses. But precisely what is going on at this point of ‘dialogue’ between phenomenological descriptions and mathematical algorithms, the latter of which are based on dynamical systems theory? It will be shown that what is happening (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dallas Willard’s Contribution to Phenomenology.Burt C. Hopkins - 2019 - Husserl Studies 35 (2):117-130.
    Dallas Willard’s contribution to phenomenology is presented in terms of his articles on, and translations into English of, Edmund Husserl’s early philosophical writings, which single-handedly prevented them from falling into oblivion, both literally and philosophically. Willard’s account of Husserl’s “negative critique” of formalized logic in those writings, and argument for its contemporary relevance, is presented and largely endorsed.
    Download  
     
    Export citation  
     
    Bookmark  
  • Mathematizing phenomenology.Jeffrey Yoshimi - 2007 - Phenomenology and the Cognitive Sciences 6 (3):271-291.
    Husserl is well known for his critique of the “mathematizing tendencies” of modern science, and is particularly emphatic that mathematics and phenomenology are distinct and in some sense incompatible. But Husserl himself uses mathematical methods in phenomenology. In the first half of the paper I give a detailed analysis of this tension, showing how those Husserlian doctrines which seem to speak against application of mathematics to phenomenology do not in fact do so. In the second half of the paper I (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • On the meaning of Hilbert's consistency problem (paris, 1900).Enrico Moriconi - 2003 - Synthese 137 (1-2):129 - 139.
    The theory that ``consistency implies existence'' was put forward by Hilbert on various occasions around the start of the last century, and it was strongly and explicitly emphasized in his correspondence with Frege. Since (Gödel's) completeness theorem, abstractly speaking, forms the basis of this theory, it has become common practice to assume that Hilbert took for granted the semantic completeness of second order logic. In this paper I maintain that this widely held view is untrue to the facts, and that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Husserl’s philosophy of mathematics: its origin and relevance.Guillermo Rosado Haddock - 2007 - Husserl Studies 22 (3):193-222.
    This paper offers an exposition of Husserl's mature philosophy of mathematics, expounded for the first time in Logische Untersuchungen and maintained without any essential change throughout the rest of his life. It is shown that Husserl's views on mathematics were strongly influenced by Riemann, and had clear affinities with the much later Bourbaki school.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Soft Axiomatisation: John von Neumann on Method and von Neumann's Method in the Physical Sciences.Miklós Rédei & Michael Stöltzner - 2006 - In Emily Carson & Renate Huber (eds.), Intuition and the Axiomatic Method. Springer. pp. 235--249.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards completeness: Husserl on theories of manifolds 1890–1901.Mirja Helena Hartimo - 2007 - Synthese 156 (2):281-310.
    Husserl’s notion of definiteness, i.e., completeness is crucial to understanding Husserl’s view of logic, and consequently several related philosophical views, such as his argument against psychologism, his notion of ideality, and his view of formal ontology. Initially Husserl developed the notion of definiteness to clarify Hermann Hankel’s ‘principle of permanence’. One of the first attempts at formulating definiteness can be found in the Philosophy of Arithmetic, where definiteness serves the purpose of the modern notion of ‘soundness’ and leads Husserl to (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations