Switch to: References

Add citations

You must login to add citations.
  1. Philosophy of mathematics.Leon Horsten - 2008 - Stanford Encyclopedia of Philosophy.
    If mathematics is regarded as a science, then the philosophy of mathematics can be regarded as a branch of the philosophy of science, next to disciplines such as the philosophy of physics and the philosophy of biology. However, because of its subject matter, the philosophy of mathematics occupies a special place in the philosophy of science. Whereas the natural sciences investigate entities that are located in space and time, it is not at all obvious that this is also the case (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Mathematical explanation: Problems and prospects.Paolo Mancosu - 2001 - Topoi 20 (1):97-117.
    Download  
     
    Export citation  
     
    Bookmark   51 citations  
  • Deep Disagreement in Mathematics.Andrew Aberdein - 2023 - Global Philosophy 33 (1):1-27.
    Disagreements that resist rational resolution, often termed “deep disagreements”, have been the focus of much work in epistemology and informal logic. In this paper, I argue that they also deserve the attention of philosophers of mathematics. I link the question of whether there can be deep disagreements in mathematics to a more familiar debate over whether there can be revolutions in mathematics. I propose an affirmative answer to both questions, using the controversy over Shinichi Mochizuki’s work on the abc conjecture (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On Certainty, Change, and “Mathematical Hinges”.James V. Martin - 2022 - Topoi 41 (5):987-1002.
    Annalisa Coliva (Int J Study Skept 10(3–4):346–366, 2020) asks, “Are there mathematical hinges?” I argue here, against Coliva’s own conclusion, that there are. I further claim that this affirmative answer allows a case to be made for taking the concept of a hinge to be a useful and general-purpose tool for studying mathematical practice in its real complexity. Seeing how Wittgenstein can, and why he would, countenance mathematical hinges additionally gives us a deeper understanding of some of his latest thoughts (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Grothendieck’s theory of schemes and the algebra–geometry duality.Gabriel Catren & Fernando Cukierman - 2022 - Synthese 200 (3):1-41.
    We shall address from a conceptual perspective the duality between algebra and geometry in the framework of the refoundation of algebraic geometry associated to Grothendieck’s theory of schemes. To do so, we shall revisit scheme theory from the standpoint provided by the problem of recovering a mathematical structure A from its representations \ into other similar structures B. This vantage point will allow us to analyze the relationship between the algebra-geometry duality and the structure-semiotics duality. Whereas in classical algebraic geometry (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Domain Extension and Ideal Elements in Mathematics†.Anna Bellomo - 2021 - Philosophia Mathematica 29 (3):366-391.
    Domain extension in mathematics occurs whenever a given mathematical domain is augmented so as to include new elements. Manders argues that the advantages of important cases of domain extension are captured by the model-theoretic notions of existential closure and model completion. In the specific case of domain extension via ideal elements, I argue, Manders’s proposed explanation does not suffice. I then develop and formalize a different approach to domain extension based on Dedekind’s Habilitationsrede, to which Manders’s account is compared. I (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Explanation, Existence and Natural Properties in Mathematics – A Case Study: Desargues’ Theorem.Marc Lange - 2015 - Dialectica 69 (4):435-472.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Inference to the best explanation as supporting the expansion of mathematicians’ ontological commitments.Marc Lange - 2022 - Synthese 200 (2):1-26.
    This paper argues that in mathematical practice, conjectures are sometimes confirmed by “Inference to the Best Explanation” as applied to some mathematical evidence. IBE operates in mathematics in the same way as IBE in science. When applied to empirical evidence, IBE sometimes helps to justify the expansion of scientists’ ontological commitments. Analogously, when applied to mathematical evidence, IBE sometimes helps to justify mathematicians' in expanding the range of their ontological commitments. IBE supplements other forms of non-deductive reasoning in mathematics, avoiding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Book Reviews. [REVIEW][author unknown] - 2004 - International Studies in the Philosophy of Science 18 (2):231-239.
    >The Blackwell Guide to the Philosophy of Science Peter Machamer & Michael Silberstein Oxford, Blackwell, 2002 xi + 347 pp., ISBN 0631221077, £60.00, $73.95, ISBN 0631221085, £16.9...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • How to Define a Number? A General Epistemological Account of Simon Stevin’s Art of Defining.Jurgen Naets - 2010 - Topoi 29 (1):77-86.
    This paper explores Simon Stevin’s l’Arithmétique of 1585, where we find a novel understanding of the concept of number. I will discuss the dynamics between his practice and philosophy of mathematics, and put it in the context of his general epistemological attitude. Subsequently, I will take a close look at his justificational concerns, and at how these are reflected in his inductive, a postiori and structuralist approach to investigating the numerical field. I will argue that Stevin’s renewed conceptualisation of the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The structure of mathematical experience according to Jean cavaillèst.Paul Cortois - 1996 - Philosophia Mathematica 4 (1):18-41.
    In this expository article one of the contributions of Jean Cavailles to the philosophy of mathematics is presented: the analysis of ‘mathematical experience’. The place of Cavailles on the logico-philosophical scene of the 30s and 40s is sketched. I propose a partial interpretation of Cavailles's epistemological program of so-called ‘conceptual dialectics’: mathematical holism, duality principles, the notion of formal contents, and the specific temporal structure of conceptual dynamics. The structure of mathematical abstraction is analysed in terms of its complementary dimensions: (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exploring the boundaries of conceptual evaluation.Christopher Pincock - 2010 - Philosophia Mathematica 18 (1):106-121.
    This is a critical notice of Mark Wilson's Wandering Significance.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Platonistic formalism.L. Horsten - 2001 - Erkenntnis 54 (2):173-194.
    The present paper discusses a proposal which says,roughly and with several qualifications, that thecollection of mathematical truths is identical withthe set of theorems of ZFC. It is argued that thisproposal is not as easily dismissed as outright falseor philosophically incoherent as one might think. Some morals of this are drawn for the concept ofmathematical knowledge.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Greek Geometrical Analysis.Ali Behboud - 1994 - Centaurus 37 (1):52-86.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Chris Pincock. Mathematics and Explanation.Alan Baker - 2024 - Philosophia Mathematica 32 (2):228-241.
    Download  
     
    Export citation  
     
    Bookmark