Switch to: Citations

Add references

You must login to add references.
  1. Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • (1 other version)Proof Theory and Logical Complexity.Helmut Pfeifer & Jean-Yves Girard - 1989 - Journal of Symbolic Logic 54 (4):1493.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Weak comparability of well orderings and reverse mathematics.Harvey M. Friedman & Jeffry L. Hirst - 1990 - Annals of Pure and Applied Logic 47 (1):11-29.
    Two countable well orderings are weakly comparable if there is an order preserving injection of one into the other. We say the well orderings are strongly comparable if the injection is an isomorphism between one ordering and an initial segment of the other. In [5], Friedman announced that the statement “any two countable well orderings are strongly comparable” is equivalent to ATR 0 . Simpson provides a detailed proof of this result in Chapter 5 of [13]. More recently, Friedman has (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Reverse mathematics and ordinal exponentiation.Jeffry L. Hirst - 1994 - Annals of Pure and Applied Logic 66 (1):1-18.
    Simpson has claimed that “ATR0 is the weakest set of axioms which permits the development of a decent theory of countable ordinals” [8]. This paper provides empirical support for Simpson's claim. In particular, Cantor's Normal Form Theorem and Sherman's Inequality for countable well-orderings are both equivalent to ATR0. The proofs of these results require a substantial development of ordinal exponentiation and a strengthening of the comparability result in [3].
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On Fraïssé’s conjecture for linear orders of finite Hausdorff rank.Alberto Marcone & Antonio Montalbán - 2009 - Annals of Pure and Applied Logic 160 (3):355-367.
    We prove that the maximal order type of the wqo of linear orders of finite Hausdorff rank under embeddability is φ2, the first fixed point of the ε-function. We then show that Fraïssé’s conjecture restricted to linear orders of finite Hausdorff rank is provable in +“φ2 is well-ordered” and, over , implies +“φ2 is well-ordered”.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Combinatorial principles weaker than Ramsey's Theorem for pairs.Denis R. Hirschfeldt & Richard A. Shore - 2007 - Journal of Symbolic Logic 72 (1):171-206.
    We investigate the complexity of various combinatorial theorems about linear and partial orders, from the points of view of computability theory and reverse mathematics. We focus in particular on the principles ADS (Ascending or Descending Sequence), which states that every infinite linear order has either an infinite descending sequence or an infinite ascending sequence, and CAC (Chain-AntiChain), which states that every infinite partial order has either an infinite chain or an infinite antichain. It is well-known that Ramsey's Theorem for pairs (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Nonprovability of Certain Combinatorial Properties of Finite Trees.Stephen G. Simpson - 1990 - Journal of Symbolic Logic 55 (2):868-869.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Ordinal numbers and the Hilbert basis theorem.Stephen G. Simpson - 1988 - Journal of Symbolic Logic 53 (3):961-974.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • (1 other version)Proof Theory and Logical Complexity. [REVIEW]Helmut Pfeifer - 1991 - Annals of Pure and Applied Logic 53 (4):197.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Reverse mathematics and the equivalence of definitions for well and better quasi-orders.Peter Cholak, Alberto Marcone & Reed Solomon - 2004 - Journal of Symbolic Logic 69 (3):683-712.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • On the strength of Ramsey's theorem for pairs.Peter A. Cholak, Carl G. Jockusch & Theodore A. Slaman - 2001 - Journal of Symbolic Logic 66 (1):1-55.
    We study the proof-theoretic strength and effective content of the infinite form of Ramsey's theorem for pairs. Let RT n k denote Ramsey's theorem for k-colorings of n-element sets, and let RT $^n_{ denote (∀ k)RT n k . Our main result on computability is: For any n ≥ 2 and any computable (recursive) k-coloring of the n-element sets of natural numbers, there is an infinite homogeneous set X with X'' ≤ T 0 (n) . Let IΣ n and BΣ (...)
    Download  
     
    Export citation  
     
    Bookmark   56 citations