Switch to: References

Add citations

You must login to add citations.
  1. On co-simple isols and their intersection types.Rod Downey & Theodore A. Slaman - 1992 - Annals of Pure and Applied Logic 56 (1-3):221-237.
    We solve a question of McLaughlin by showing that if A is a regressive co-simple isol, there is a co-simple regressive isol B such that the intersection type of A and B is trivial. The proof is a nonuniform 0 priority argument that can be viewed as the execution of a single strategy from a 0-argument. We establish some limit on the properties of such pairs by showing that if AxB has low degree, then the intersection type of A and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Lifschitz realizability for intuitionistic Zermelo–Fraenkel set theory.Ray-Ming Chen & Michael Rathjen - 2012 - Archive for Mathematical Logic 51 (7-8):789-818.
    A variant of realizability for Heyting arithmetic which validates Church’s thesis with uniqueness condition, but not the general form of Church’s thesis, was introduced by Lifschitz (Proc Am Math Soc 73:101–106, 1979). A Lifschitz counterpart to Kleene’s realizability for functions (in Baire space) was developed by van Oosten (J Symb Log 55:805–821, 1990). In that paper he also extended Lifschitz’ realizability to second order arithmetic. The objective here is to extend it to full intuitionistic Zermelo–Fraenkel set theory, IZF. The machinery (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Realizability semantics for quantified modal logic: Generalizing flagg’s 1985 construction.Benjamin G. Rin & Sean Walsh - 2016 - Review of Symbolic Logic 9 (4):752-809.
    A semantics for quantified modal logic is presented that is based on Kleene's notion of realizability. This semantics generalizes Flagg's 1985 construction of a model of a modal version of Church's Thesis and first-order arithmetic. While the bulk of the paper is devoted to developing the details of the semantics, to illustrate the scope of this approach, we show that the construction produces (i) a model of a modal version of Church's Thesis and a variant of a modal set theory (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Realisability for infinitary intuitionistic set theory.Merlin Carl, Lorenzo Galeotti & Robert Passmann - 2023 - Annals of Pure and Applied Logic 174 (6):103259.
    Download  
     
    Export citation  
     
    Bookmark  
  • Indefiniteness in semi-intuitionistic set theories: On a conjecture of Feferman.Michael Rathjen - 2016 - Journal of Symbolic Logic 81 (2):742-754.
    The paper proves a conjecture of Solomon Feferman concerning the indefiniteness of the continuum hypothesis relative to a semi-intuitionistic set theory.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • CZF does not have the existence property.Andrew W. Swan - 2014 - Annals of Pure and Applied Logic 165 (5):1115-1147.
    Constructive theories usually have interesting metamathematical properties where explicit witnesses can be extracted from proofs of existential sentences. For relational theories, probably the most natural of these is the existence property, EP, sometimes referred to as the set existence property. This states that whenever ϕϕ is provable, there is a formula χχ such that ϕ∧χϕ∧χ is provable. It has been known since the 80s that EP holds for some intuitionistic set theories and yet fails for IZF. Despite this, it has (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Constructive validity is nonarithmetic.Charles McCarty - 1988 - Journal of Symbolic Logic 53 (4):1036-1041.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Does Choice Really Imply Excluded Middle? Part I: Regimentation of the Goodman–Myhill Result, and Its Immediate Reception†.Neil Tennant - 2020 - Philosophia Mathematica 28 (2):139-171.
    The one-page 1978 informal proof of Goodman and Myhill is regimented in a weak constructive set theory in free logic. The decidability of identities in general (⁠|$a\!=\!b\vee\neg a\!=\!b$|⁠) is derived; then, of sentences in general (⁠|$\psi\vee\neg\psi$|⁠). Martin-Löf’s and Bell’s receptions of the latter result are discussed. Regimentation reveals the form of Choice used in deriving Excluded Middle. It also reveals an abstraction principle that the proof employs. It will be argued that the Goodman–Myhill result does not provide the constructive set (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Does Choice Really Imply Excluded Middle? Part II: Historical, Philosophical, and Foundational Reflections on the Goodman–Myhill Result†.Neil Tennant - 2021 - Philosophia Mathematica 29 (1):28-63.
    Our regimentation of Goodman and Myhill’s proof of Excluded Middle revealed among its premises a form of Choice and an instance of Separation.Here we revisit Zermelo’s requirement that the separating property be definite. The instance that Goodman and Myhill used is not constructively warranted. It is that principle, and not Choice alone, that precipitates Excluded Middle.Separation in various axiomatizations of constructive set theory is examined. We conclude that insufficient critical attention has been paid to how those forms of Separation fail, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Separating the Fan theorem and its weakenings II.Robert S. Lubarsky - 2019 - Journal of Symbolic Logic 84 (4):1484-1509.
    Varieties of the Fan Theorem have recently been developed in reverse constructive mathematics, corresponding to different continuity principles. They form a natural implicational hierarchy. Earlier work showed all of these implications to be strict. Here we reprove one of the strictness results, using very different arguments. The technique used is a mixture of realizability, forcing in the guise of Heyting-valued models, and Kripke models.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ordinal analysis of partial combinatory algebras.Paul Shafer & Sebastiaan A. Terwijn - 2021 - Journal of Symbolic Logic 86 (3):1154-1188.
    For every partial combinatory algebra, we define a hierarchy of extensionality relations using ordinals. We investigate the closure ordinals of pca’s, i.e., the smallest ordinals where these relations become equal. We show that the closure ordinal of Kleene’s first model is ${\omega _1^{\textit {CK}}}$ and that the closure ordinal of Kleene’s second model is $\omega _1$. We calculate the exact complexities of the extensionality relations in Kleene’s first model, showing that they exhaust the hyperarithmetical hierarchy. We also discuss embeddings of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Satisfiability is False Intuitionistically: A Question from Dana Scott.Charles McCarty - 2020 - Studia Logica 108 (4):803-813.
    Satisfiability or Sat\ is the metatheoretic statementEvery formally intuitionistically consistent set of first-order sentences has a model.The models in question are the Tarskian relational structures familiar from standard first-order model theory, but here treated within intuitionistic metamathematics. We prove that both IZF, intuitionistic Zermelo–Fraenkel set theory, and HAS, second-order Heyting arithmetic, prove Sat\ to be false outright. Following the lead of Carter :75–95, 2008), we then generalize this result to some provably intermediate first-order logics, including the Rose logic. These metatheorems (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Markov's principle, isols and Dedekind finite sets.Charles McCarty - 1988 - Journal of Symbolic Logic 53 (4):1042-1069.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Choice and independence of premise rules in intuitionistic set theory.Emanuele Frittaion, Takako Nemoto & Michael Rathjen - 2023 - Annals of Pure and Applied Logic 174 (9):103314.
    Download  
     
    Export citation  
     
    Bookmark  
  • Embeddings between Partial Combinatory Algebras.Anton Golov & Sebastiaan A. Terwijn - 2023 - Notre Dame Journal of Formal Logic 64 (1):129-158.
    Partial combinatory algebras (pcas) are algebraic structures that serve as generalized models of computation. In this article, we study embeddings of pcas. In particular, we systematize the embeddings between relativizations of Kleene’s models, of van Oosten’s sequential computation model, and of Scott’s graph model, showing that an embedding between two relativized models exists if and only if there exists a particular reduction between the oracles. We obtain a similar result for the lambda calculus, showing in particular that it cannot be (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Extensional Realizability and Choice for Dependent Types in Intuitionistic Set Theory.Emanuele Frittaion - 2023 - Journal of Symbolic Logic 88 (3):1138-1169.
    In [17], we introduced an extensional variant of generic realizability [22], where realizers act extensionally on realizers, and showed that this form of realizability provides inner models of $\mathsf {CZF}$ (constructive Zermelo–Fraenkel set theory) and $\mathsf {IZF}$ (intuitionistic Zermelo–Fraenkel set theory), that further validate $\mathsf {AC}_{\mathsf {FT}}$ (the axiom of choice in all finite types). In this paper, we show that extensional generic realizability validates several choice principles for dependent types, all exceeding $\mathsf {AC}_{\mathsf {FT}}$. We then show that adding (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The disjunction and related properties for constructive Zermelo-Fraenkel set theory.Michael Rathjen - 2005 - Journal of Symbolic Logic 70 (4):1233-1254.
    This paper proves that the disjunction property, the numerical existence property, Church’s rule, and several other metamathematical properties hold true for Constructive Zermelo-Fraenkel Set Theory, CZF, and also for the theory CZF augmented by the Regular Extension Axiom.As regards the proof technique, it features a self-validating semantics for CZF that combines realizability for extensional set theory and truth.
    Download  
     
    Export citation  
     
    Bookmark   12 citations