Switch to: References

Add citations

You must login to add citations.
  1. Assertion, denial and non-classical theories.Greg Restall - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 81--99.
    In this paper I urge friends of truth-value gaps and truth-value gluts – proponents of paracomplete and paraconsistent logics – to consider theories not merely as sets of sentences, but as pairs of sets of sentences, or what I call ‘bitheories,’ which keep track not only of what holds according to the theory, but also what fails to hold according to the theory. I explain the connection between bitheories, sequents, and the speech acts of assertion and denial. I illustrate the (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Ultralogic as Universal?: The Sylvan Jungle - Volume 4.Richard Routley - 2019 - Cham, Switzerland: Springer Verlag.
    Ultralogic as Universal? is a seminal text in non-classcial logic. Richard Routley presents a hugely ambitious program: to use an 'ultramodal' logic as a universal key, which opens, if rightly operated, all locks. It provides a canon for reasoning in every situation, including illogical, inconsistent and paradoxical ones, realized or not, possible or not. A universal logic, Routley argues, enables us to go where no other logic—especially not classical logic—can. Routley provides an expansive and singular vision of how a universal (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Paraconsistency: Logic and Applications.Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.) - 2012 - Dordrecht, Netherland: Springer.
    A logic is called 'paraconsistent' if it rejects the rule called 'ex contradictione quodlibet', according to which any conclusion follows from inconsistent premises. While logicians have proposed many technically developed paraconsistent logical systems and contemporary philosophers like Graham Priest have advanced the view that some contradictions can be true, and advocated a paraconsistent logic to deal with them, until recent times these systems have been little understood by philosophers. This book presents a comprehensive overview on paraconsistent logical systems to change (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Logic of paradox revisited.Graham Priest - 1984 - Journal of Philosophical Logic 13 (2):153 - 179.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Wittgenstein on Incompleteness Makes Paraconsistent Sense.Francesco Berto - 2012 - In Francesco Berto, Edwin Mares, Koji Tanaka & Francesco Paoli (eds.), Paraconsistency: Logic and Applications. Dordrecht, Netherland: Springer. pp. 257--276.
    I provide an interpretation of Wittgenstein's much criticized remarks on Gödel's First Incompleteness Theorem in the light of paraconsistent arithmetics: in taking Gödel's proof as a paradoxical derivation, Wittgenstein was right, given his deliberate rejection of the standard distinction between theory and metatheory. The reasoning behind the proof of the truth of the Gödel sentence is then performed within the formal system itself, which turns out to be inconsistent. I show that the models of paraconsistent arithmetics (obtained via the Meyer-Mortensen (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Can Gödel's Incompleteness Theorem be a Ground for Dialetheism?Seungrak Choi - 2017 - Korean Journal of Logic 20 (2):241-271.
    Dialetheism is the view that there exists a true contradiction. This paper ventures to suggest that Priest’s argument for Dialetheism from Gödel’s theorem is unconvincing as the lesson of Gödel’s proof (or Rosser’s proof) is that any sufficiently strong theories of arithmetic cannot be both complete and consistent. In addition, a contradiction is derivable in Priest’s inconsistent and complete arithmetic. An alternative argument for Dialetheism is given by applying Gödel sentence to the inconsistent and complete theory of arithmetic. We argue, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • From Hilbert proofs to consecutions and back.Tore Fjetland Øgaard - 2021 - Australasian Journal of Logic 18 (2):51-72.
    Restall set forth a "consecution" calculus in his "An Introduction to Substructural Logics." This is a natural deduction type sequent calculus where the structural rules play an important role. This paper looks at different ways of extending Restall's calculus. It is shown that Restall's weak soundness and completeness result with regards to a Hilbert calculus can be extended to a strong one so as to encompass what Restall calls proofs from assumptions. It is also shown how to extend the calculus (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Relevance and verisimilitude.Chris Mortensen - 1983 - Synthese 55 (3):353-364.
    Popper's definition looked initially promising provided that the restriction of classical logic was removed. As we have seen, this promise is not fulfilled. The search for a satisfactory verisimilitude ordering must therefore be pursued along more mainstream lines. The present exercise ought, however, to make us aware of the possibility that breakdowns of proposed definitions might only occur because of strictly classical assumptions.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Is strict finitism arbitrary?Nuno Maia - forthcoming - Philosophical Quarterly.
    Strict finitism posits a largest natural number. The view is usually thought to be objectionably arbitrary. After all, there seems to be no apparent reason as to why the natural numbers should ‘stop’ at a specific point and not a bit later on the natural line. Drawing on how arguments from arbitrariness are employed in mereology, I propose several ways of understanding this objection against strict finitism. No matter how it is understood, I argue that it is always found wanting.
    Download  
     
    Export citation  
     
    Bookmark  
  • Varieties of Finitism.Manuel Bremer - 2007 - Metaphysica 8 (2):131-148.
    I consider here several versions of finitism or conceptions that try to work around postulating sets of infinite size. Restricting oneself to the so-called potential infinite seems to rest either on temporal readings of infinity (or infinite series) or on anti-realistic background assumptions. Both these motivations may be considered problematic. Quine’s virtual set theory points out where strong assumptions of infinity enter into number theory, but is implicitly committed to infinity anyway. The approaches centring on the indefinitely large and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Idealist Origins: 1920s and Before.Martin Davies & Stein Helgeby - 2014 - In Graham Oppy & Nick Trakakis (eds.), History of Philosophy in Australia and New Zealand. Dordrecht: Springer. pp. 15-54.
    This paper explores early Australasian philosophy in some detail. Two approaches have dominated Western philosophy in Australia: idealism and materialism. Idealism was prevalent between the 1880s and the 1930s, but dissipated thereafter. Idealism in Australia often reflected Kantian themes, but it also reflected the revival of interest in Hegel through the work of ‘absolute idealists’ such as T. H. Green, F. H. Bradley, and Henry Jones. A number of the early New Zealand philosophers were also educated in the idealist tradition (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • ⊃E is Admissible in “true” relevant arithmetic.Robert K. Meyer - 1998 - Journal of Philosophical Logic 27 (4):327-351.
    The system R## of "true" relevant arithmetic is got by adding the ω-rule "Infer VxAx from AO, A1, A2, ...." to the system R# of "relevant Peano arithmetic". The rule ⊃E (or "gamma") is admissible for R##. This contrasts with the counterexample to ⊃E for R# (Friedman & Meyer, "Whither Relevant Arithmetic"). There is a Way Up part of the proof, which selects an arbitrary non-theorem C of R## and which builds by generalizing Henkin and Belnap arguments a prime theory (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Modalité et changement: δύναμις et cinétique aristotélicienne.Marion Florian - 2023 - Dissertation, Université Catholique de Louvain
    The present PhD dissertation aims to examine the relation between modality and change in Aristotle’s metaphysics. -/- On the one hand, Aristotle supports his modal realism (i.e., worldly objects have modal properties - potentialities and essences - that ground the ascriptions of possibility and necessity) by arguing that the rejection of modal realism makes change inexplicable, or, worse, banishes it from the realm of reality. On the other hand, the Stagirite analyses processes by means of modal notions (‘change is the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Conditionals, quantification, and strong mathematical induction.Daniel H. Cohen - 1991 - Journal of Philosophical Logic 20 (3):315 - 326.
    Download  
     
    Export citation  
     
    Bookmark  
  • Merge: In Honour of Robert K. Meyer.Chris Mortensen - 2010 - Australasian Journal of Logic 8:135-143.
    Methods for unifying inconsistent pairs of theories, which we call collectively MERGE, are defined and their properties outlined.
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophy, Drama and Literature.Rick Benitez - 2010 - In Graham Robert Oppy, Nick Trakakis, Lynda Burns, Steven Gardner & Fiona Leigh (eds.), A companion to philosophy in Australia & New Zealand. Clayton, Victoria, Australia: Monash University Publishing. pp. 371-372.
    Philosophy and Literature is an internationally renowned refereed journal founded by Denis Dutton at the University of Canterbury, Christchurch. It is now published by the Johns Hopkins University Press. Since its inception in 1976, Philosophy and Literature has been concerned with the relation between literary and philosophical studies, publishing articles on the philosophical interpretation of literature as well as the literary treatment of philosophy. Philosophy and Literature has sometimes been regarded as iconoclastic, in the sense that it repudiates academic pretensions, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The classicality of classical Mathematics.Luis Estrada-González - 2017 - Journal of the Indian Council of Philosophical Research 34 (2):365-377.
    PurposeGraham Priest has recently argued that the distinctive trait of classical mathematics is that the conditional of its underlying logic—that is, classical logic—is extensional. In this article, I aim to present an alternate explanation of the specificity of classical mathematics.MethodI examine Priest's argument for his claim and show its shortcomings. Then I deploy a model-theoretic presentation of logics that allows comparing them, and the mathematics based on them, more fine-grainedly.ResultsSuch a model-theoretic presentation of logics suggests that the specific character of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Provability multilattice logic.Yaroslav Petrukhin - 2022 - Journal of Applied Non-Classical Logics 32 (4):239-272.
    In this paper, we introduce provability multilattice logic PMLn and multilattice arithmetic MPAn which extends first-order multilattice logic with equality by multilattice versions of Peano axioms. We show that PMLn has the provability interpretation with respect to MPAn and prove the arithmetic completeness theorem for it. We formulate PMLn in the form of a nested sequent calculus and show that cut is admissible in it. We introduce the notion of a provability multilattice and develop algebraic semantics for PMLn on its (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Relevant predication 1: The formal theory. [REVIEW]J. Michael Dunn - 1987 - Journal of Philosophical Logic 16 (4):347-381.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Inconsistent models of arithmetic part I: Finite models. [REVIEW]Graham Priest - 1997 - Journal of Philosophical Logic 26 (2):223-235.
    The paper concerns interpretations of the paraconsistent logic LP which model theories properly containing all the sentences of first order arithmetic. The paper demonstrates the existence of such models and provides a complete taxonomy of the finite ones.
    Download  
     
    Export citation  
     
    Bookmark   32 citations