Switch to: Citations

Add references

You must login to add references.
  1. Randomness, Lowness and Degrees.George Barmpalias, Andrew E. M. Lewis & Mariya Soskova - 2008 - Journal of Symbolic Logic 73 (2):559 - 577.
    We say that A ≤LR B if every B-random number is A-random. Intuitively this means that if oracle A can identify some patterns on some real γ. In other words. B is at least as good as A for this purpose. We study the structure of the LR degrees globally and locally (i.e., restricted to the computably enumberable degrees) and their relationship with the Turing degrees. Among other results we show that whenever α in not GL₂ the LR degree of (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Randomness, relativization and Turing degrees.André Nies, Frank Stephan & Sebastiaan A. Terwijn - 2005 - Journal of Symbolic Logic 70 (2):515-535.
    We compare various notions of algorithmic randomness. First we consider relativized randomness. A set is n-random if it is Martin-Löf random relative to ∅. We show that a set is 2-random if and only if there is a constant c such that infinitely many initial segments x of the set are c-incompressible: C ≥ |x|-c. The ‘only if' direction was obtained independently by Joseph Miller. This characterization can be extended to the case of time-bounded C-complexity. Next we prove some results (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Relativizing chaitin's halting probability.Rod Downey, Denis R. Hirschfeldt, Joseph S. Miller & André Nies - 2005 - Journal of Mathematical Logic 5 (02):167-192.
    As a natural example of a 1-random real, Chaitin proposed the halting probability Ω of a universal prefix-free machine. We can relativize this example by considering a universal prefix-free oracle machine U. Let [Formula: see text] be the halting probability of UA; this gives a natural uniform way of producing an A-random real for every A ∈ 2ω. It is this operator which is our primary object of study. We can draw an analogy between the jump operator from computability theory (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Relative Randomness and Cardinality.George Barmpalias - 2010 - Notre Dame Journal of Formal Logic 51 (2):195-205.
    A set $B\subseteq\mathbb{N}$ is called low for Martin-Löf random if every Martin-Löf random set is also Martin-Löf random relative to B . We show that a $\Delta^0_2$ set B is low for Martin-Löf random if and only if the class of oracles which compress less efficiently than B , namely, the class $\mathcal{C}^B=\{A\ |\ \forall n\ K^B(n)\leq^+ K^A(n)\}$ is countable (where K denotes the prefix-free complexity and $\leq^+$ denotes inequality modulo a constant. It follows that $\Delta^0_2$ is the largest arithmetical (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Computability and Randomness.André Nies - 2008 - Oxford, England: Oxford University Press UK.
    The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The Kolmogorov complexity of random reals.Liang Yu, Decheng Ding & Rodney Downey - 2004 - Annals of Pure and Applied Logic 129 (1-3):163-180.
    We investigate the initial segment complexity of random reals. Let K denote prefix-free Kolmogorov complexity. A natural measure of the relative randomness of two reals α and β is to compare complexity K and K. It is well-known that a real α is 1-random iff there is a constant c such that for all n, Kn−c. We ask the question, what else can be said about the initial segment complexity of random reals. Thus, we study the fine behaviour of K (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Every 2-random real is Kolmogorov random.Joseph S. Miller - 2004 - Journal of Symbolic Logic 69 (3):907-913.
    We study reals with infinitely many incompressible prefixes. Call $A \in 2^{\omega}$ Kolmogorot random if $(\exists^{\infty}n) C(A \upharpoonright n) \textgreater n - \mathcal{O}(1)$ , where C denotes plain Kolmogorov complexity. This property was suggested by Loveland and studied by $Martin-L\ddot{0}f$ , Schnorr and Solovay. We prove that 2-random reals are Kolmogorov random. Together with the converse-proved by Nies. Stephan and Terwijn [11]-this provides a natural characterization of 2-randomness in terms of plain complexity. We finish with a related characterization of 2-randomness.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The axiomatization of randomness.Michiel van Lambalgen - 1990 - Journal of Symbolic Logic 55 (3):1143-1167.
    We present a faithful axiomatization of von Mises' notion of a random sequence, using an abstract independence relation. A byproduct is a quantifier elimination theorem for Friedman's "almost all" quantifier in terms of this independence relation.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Randomness and computability: Open questions.Joseph S. Miller & André Nies - 2006 - Bulletin of Symbolic Logic 12 (3):390-410.
    It is time for a new paper about open questions in the currently very active area of randomness and computability. Ambos-Spies and Kučera presented such a paper in 1999 [1]. All the question in it have been solved, except for one: is KL-randomness different from Martin-Löf randomness? This question is discussed in Section 6.Not all the questions are necessarily hard—some simply have not been tried seriously. When we think a question is a major one, and therefore likely to be hard, (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Algorithmic randomness and complexity. Theory and Applications of Computability.Rodney G. Downey & Denis R. Hirschfeldt - 2012 - Bulletin of Symbolic Logic 18 (1):126-128.
    Download  
     
    Export citation  
     
    Bookmark   12 citations