Switch to: References

Add citations

You must login to add citations.
  1. The Equivalence of Definitions of Algorithmic Randomness.Christopher Porter - 2021 - Philosophia Mathematica 29 (2):153–194.
    In this paper, I evaluate the claim that the equivalence of multiple intensionally distinct definitions of random sequence provides evidence for the claim that these definitions capture the intuitive conception of randomness, concluding that the former claim is false. I then develop an alternative account of the significance of randomness-theoretic equivalence results, arguing that they are instances of a phenomenon I refer to as schematic equivalence. On my account, this alternative approach has the virtue of providing the plurality of definitions (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Randomness, computation and mathematics.Rod Downey - 2012 - In S. Barry Cooper (ed.), How the World Computes. pp. 162--181.
    Download  
     
    Export citation  
     
    Bookmark  
  • Π 1 0 classes, L R degrees and Turing degrees.George Barmpalias, Andrew E. M. Lewis & Frank Stephan - 2008 - Annals of Pure and Applied Logic 156 (1):21-38.
    We say that A≤LRB if every B-random set is A-random with respect to Martin–Löf randomness. We study this relation and its interactions with Turing reducibility, classes, hyperimmunity and other recursion theoretic notions.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Upper bounds on ideals in the computably enumerable Turing degrees.George Barmpalias & André Nies - 2011 - Annals of Pure and Applied Logic 162 (6):465-473.
    We study ideals in the computably enumerable Turing degrees, and their upper bounds. Every proper ideal in the c.e. Turing degrees has an incomplete upper bound. It follows that there is no prime ideal in the c.e. Turing degrees. This answers a question of Calhoun [2]. Every proper ideal in the c.e. Turing degrees has a low2 upper bound. Furthermore, the partial order of ideals under inclusion is dense.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The nature of probability.Patrick Suppes - 2010 - Philosophical Studies 147 (1):89 - 102.
    The thesis of this article is that the nature of probability is centered on its formal properties, not on any of its standard interpretations. Section 2 is a survey of Bayesian applications. Section 3 focuses on two examples from physics that seem as completely objective as other physical concepts. Section 4 compares the conflict between subjective Bayesians and objectivists about probability to the earlier strident conflict in physics about the nature of force. Section 5 outlines a pragmatic approach to the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The K -Degrees, Low for K Degrees,and Weakly Low for K Sets.Joseph S. Miller - 2009 - Notre Dame Journal of Formal Logic 50 (4):381-391.
    We call A weakly low for K if there is a c such that $K^A(\sigma)\geq K(\sigma)-c$ for infinitely many σ; in other words, there are infinitely many strings that A does not help compress. We prove that A is weakly low for K if and only if Chaitin's Ω is A-random. This has consequences in the K-degrees and the low for K (i.e., low for random) degrees. Furthermore, we prove that the initial segment prefix-free complexity of 2-random reals is infinitely (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Low upper bounds of ideals.Antonín Kučera & Theodore A. Slaman - 2009 - Journal of Symbolic Logic 74 (2):517-534.
    We show that there is a low T-upper bound for the class of K-trivial sets, namely those which are weak from the point of view of algorithmic randomness. This result is a special case of a more general characterization of ideals in $\Delta _2^0 $ T-degrees for which there is a low T-upper bound.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Denjoy, Demuth and density.Laurent Bienvenu, Rupert Hölzl, Joseph S. Miller & André Nies - 2014 - Journal of Mathematical Logic 14 (1):1450004.
    We consider effective versions of two classical theorems, the Lebesgue density theorem and the Denjoy–Young–Saks theorem. For the first, we show that a Martin-Löf random real z ∈ [0, 1] is Turing incomplete if and only if every effectively closed class.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The computational content of intrinsic density.Eric P. Astor - 2018 - Journal of Symbolic Logic 83 (2):817-828.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A random set which only computes strongly jump-traceable C.e. Sets.Noam Greenberg - 2011 - Journal of Symbolic Logic 76 (2):700 - 718.
    We prove that there is a ${\mathrm{\Delta }}_{2}^{0}$ , 1-random set Y such that every computably enumerable set which is computable from Y is strongly jump-traceable. We also show that for every order function h there is an ω-c.e. random set Y such that every computably enumerable set which is computable from Y is h-jump-traceable. This establishes a correspondence between rates of jump-traceability and computability from ω-c.e. random sets.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Benign cost functions and lowness properties.Noam Greenberg & André Nies - 2011 - Journal of Symbolic Logic 76 (1):289 - 312.
    We show that the class of strongly jump-traceable c.e. sets can be characterised as those which have sufficiently slow enumerations so they obey a class of well-behaved cost functions, called benign. This characterisation implies the containment of the class of strongly jump-traceable c.e. Turing degrees in a number of lowness classes, in particular the classes of the degrees which lie below incomplete random degrees, indeed all LR-hard random degrees, and all ω-c.e. random degrees. The last result implies recent results of (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Tracing and domination in the Turing degrees.George Barmpalias - 2012 - Annals of Pure and Applied Logic 163 (5):500-505.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Kolmogorov complexity and computably enumerable sets.George Barmpalias & Angsheng Li - 2013 - Annals of Pure and Applied Logic 164 (12):1187-1200.
    Download  
     
    Export citation  
     
    Bookmark  
  • Computing k-trivial sets by incomplete random sets.Laurent Bienvenu, Adam R. Day, Noam Greenberg, Antonín Kučera, Joseph S. Miller, André Nies & Dan Turetsky - 2014 - Bulletin of Symbolic Logic 20 (1):80-90.
    EveryK-trivial set is computable from an incomplete Martin-Löf random set, i.e., a Martin-Löf random set that does not compute the halting problem.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Demuth randomness and computational complexity.Antonín Kučera & André Nies - 2011 - Annals of Pure and Applied Logic 162 (7):504-513.
    Demuth tests generalize Martin-Löf tests in that one can exchange the m-th component a computably bounded number of times. A set fails a Demuth test if Z is in infinitely many final versions of the Gm. If we only allow Demuth tests such that GmGm+1 for each m, we have weak Demuth randomness.We show that a weakly Demuth random set can be high and , yet not superhigh. Next, any c.e. set Turing below a Demuth random set is strongly jump-traceable.We (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Characterizing strong randomness via Martin-Löf randomness.Liang Yu - 2012 - Annals of Pure and Applied Logic 163 (3):214-224.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Hyperimmune-free degrees and Schnorr triviality.Johanna N. Y. Franklin - 2008 - Journal of Symbolic Logic 73 (3):999-1008.
    We investigate the relationship between lowness for Schnorr randomness and Schnorr triviality. We show that a real is low for Schnorr randomness if and only if it is Schnorr trivial and hyperimmune free.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Randomness notions and reverse mathematics.André Nies & Paul Shafer - 2020 - Journal of Symbolic Logic 85 (1):271-299.
    We investigate the strength of a randomness notion ${\cal R}$ as a set-existence principle in second-order arithmetic: for each Z there is an X that is ${\cal R}$-random relative to Z. We show that the equivalence between 2-randomness and being infinitely often C-incompressible is provable in $RC{A_0}$. We verify that $RC{A_0}$ proves the basic implications among randomness notions: 2-random $\Rightarrow$ weakly 2-random $\Rightarrow$ Martin-Löf random $\Rightarrow$ computably random $\Rightarrow$ Schnorr random. Also, over $RC{A_0}$ the existence of computable randoms is equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Jump inversions inside effectively closed sets and applications to randomness.George Barmpalias, Rod Downey & Keng Meng Ng - 2011 - Journal of Symbolic Logic 76 (2):491 - 518.
    We study inversions of the jump operator on ${\mathrm{\Pi }}_{1}^{0}$ classes, combined with certain basis theorems. These jump inversions have implications for the study of the jump operator on the random degrees—for various notions of randomness. For example, we characterize the jumps of the weakly 2-random sets which are not 2-random, and the jumps of the weakly 1-random relative to 0′ sets which are not 2-random. Both of the classes coincide with the degrees above 0′ which are not 0′-dominated. A (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation