Switch to: References

Add citations

You must login to add citations.
  1. Degree spectra and immunity properties.Barbara F. Csima & Iskander S. Kalimullin - 2010 - Mathematical Logic Quarterly 56 (1):67-77.
    We analyze the degree spectra of structures in which different types of immunity conditions are encoded. In particular, we give an example of a structure whose degree spectrum coincides with the hyperimmune degrees. As a corollary, this shows the existence of an almost computable structure of which the complement of the degree spectrum is uncountable.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Computability of Homogeneous Models.Karen Lange & Robert I. Soare - 2007 - Notre Dame Journal of Formal Logic 48 (1):143-170.
    In the last five years there have been a number of results about the computable content of the prime, saturated, or homogeneous models of a complete decidable theory T in the spirit of Vaught's "Denumerable models of complete theories" combined with computability methods for degrees d ≤ 0′. First we recast older results by Goncharov, Peretyat'kin, and Millar in a more modern framework which we then apply. Then we survey recent results by Lange, "The degree spectra of homogeneous models," which (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Degree spectra of real closed fields.Russell Miller & Victor Ocasio González - 2019 - Archive for Mathematical Logic 58 (3-4):387-411.
    Several researchers have recently established that for every Turing degree \, the real closed field of all \-computable real numbers has spectrum \. We investigate the spectra of real closed fields further, focusing first on subfields of the field \ of computable real numbers, then on archimedean real closed fields more generally, and finally on non-archimedean real closed fields. For each noncomputable, computably enumerable set C, we produce a real closed C-computable subfield of \ with no computable copy. Then we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Computability-theoretic complexity of countable structures.Valentina S. Harizanov - 2002 - Bulletin of Symbolic Logic 8 (4):457-477.
    Computable model theory, also called effective or recursive model theory, studies algorithmic properties of mathematical structures, their relations, and isomorphisms. These properties can be described syntactically or semantically. One of the major tasks of computable model theory is to obtain, whenever possible, computability-theoretic versions of various classical model-theoretic notions and results. For example, in the 1950's, Fröhlich and Shepherdson realized that the concept of a computable function can make van der Waerden's intuitive notion of an explicit field precise. This led (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A-computable graphs.Matthew Jura, Oscar Levin & Tyler Markkanen - 2016 - Annals of Pure and Applied Logic 167 (3):235-246.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the complexity of the successivity relation in computable linear orderings.Rod Downey, Steffen Lempp & Guohua Wu - 2010 - Journal of Mathematical Logic 10 (1):83-99.
    In this paper, we solve a long-standing open question, about the spectrum of the successivity relation on a computable linear ordering. We show that if a computable linear ordering [Formula: see text] has infinitely many successivities, then the spectrum of the successivity relation is closed upwards in the computably enumerable Turing degrees. To do this, we use a new method of constructing [Formula: see text]-isomorphisms, which has already found other applications such as Downey, Kastermans and Lempp [9] and is of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations