Switch to: References

Add citations

You must login to add citations.
  1. The distributed breakout algorithms.Katsutoshi Hirayama & Makoto Yokoo - 2005 - Artificial Intelligence 161 (1-2):89-115.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Multi-agent oriented constraint satisfaction.Jiming Liu, Han Jing & Y. Y. Tang - 2002 - Artificial Intelligence 136 (1):101-144.
    Download  
     
    Export citation  
     
    Bookmark  
  • Backtracking algorithms for disjunctions of temporal constraints.Kostas Stergiou & Manolis Koubarakis - 2000 - Artificial Intelligence 120 (1):81-117.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Exploiting the deep structure of constraint problems.Colin P. Williams & Tad Hogg - 1994 - Artificial Intelligence 70 (1-2):73-117.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Variable and value ordering heuristics for the job shop scheduling constraint satisfaction problem.Norman Sadeh & Mark S. Fox - 1996 - Artificial Intelligence 86 (1):1-41.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Epsilon-transformation: exploiting phase transitions to solve combinatorial optimization problems.Joseph C. Pemberton & Weixiong Zhang - 1996 - Artificial Intelligence 81 (1-2):297-325.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • A Methodology to Determine the Subset of Heuristics for Hyperheuristics through Metaearning for Solving Graph Coloring and Capacitated Vehicle Routing Problems.Lucero Ortiz-Aguilar, Martín Carpio, Alfonso Rojas-Domínguez, Manuel Ornelas-Rodriguez, H. J. Puga-Soberanes & Jorge A. Soria-Alcaraz - 2021 - Complexity 2021:1-22.
    In this work, we focus on the problem of selecting low-level heuristics in a hyperheuristic approach with offline learning, for the solution of instances of different problem domains. The objective is to improve the performance of the offline hyperheuristic approach, identifying equivalence classes in a set of instances of different problems and selecting the best performing heuristics in each of them. A methodology is proposed as the first step of a set of instances of all problems, and the generic characteristics (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Networked bubble propagation: a polynomial-time hypothetical reasoning method for computing near-optimal solutions.Yukio Ohsawa & Mitsuru Ishizuka - 1997 - Artificial Intelligence 91 (1):131-154.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • CABINS: a framework of knowledge acquisition and iterative revision for schedule improvement and reactive repair.Kazuo Miyashita & Katia Sycara - 1995 - Artificial Intelligence 76 (1-2):377-426.
    Download  
     
    Export citation  
     
    Bookmark  
  • Fuzzy rrDFCSP and planning.Ian Miguel & Qiang Shen - 2003 - Artificial Intelligence 148 (1-2):11-52.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Heuristic evaluation functions in artificial intelligence search algorithms.Richard E. Korf - 1995 - Minds and Machines 5 (4):489-498.
    We consider a special case of heuristics, namely numeric heuristic evaluation functions, and their use in artificial intelligence search algorithms. The problems they are applied to fall into three general classes: single-agent path-finding problems, two-player games, and constraint-satisfaction problems. In a single-agent path-finding problem, such as the Fifteen Puzzle or the travelling salesman problem, a single agent searches for a shortest path from an initial state to a goal state. Two-player games, such as chess and checkers, involve an adversarial relationship (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Local search with constraint propagation and conflict-based heuristics.Narendra Jussien & Olivier Lhomme - 2002 - Artificial Intelligence 139 (1):21-45.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Refining the phase transition in combinatorial search.Tad Hogg - 1996 - Artificial Intelligence 81 (1-2):127-154.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Phase transitions and the search problem.Tad Hogg, Bernardo A. Huberman & Colin P. Williams - 1996 - Artificial Intelligence 81 (1-2):1-15.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The computational complexity of propositional STRIPS planning.Tom Bylander - 1994 - Artificial Intelligence 69 (1-2):165-204.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • A Lagrangian reconstruction of GENET.Kenneth M. F. Choi, Jimmy H. M. Lee & Peter J. Stuckey - 2000 - Artificial Intelligence 123 (1-2):1-39.
    Download  
     
    Export citation  
     
    Bookmark  
  • A probabilistic analysis of prepositional STRIPS planning.Tom Bylander - 1996 - Artificial Intelligence 81 (1-2):241-271.
    Download  
     
    Export citation  
     
    Bookmark   4 citations