Switch to: References

Add citations

You must login to add citations.
  1. On the consistency strength of ‘Accessible’ Jonsson Cardinals and of the Weak Chang Conjecture.Hans-Dieter Donder & Peter Koepke - 1983 - Annals of Pure and Applied Logic 25 (3):233-261.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Ramsey-like cardinals.Victoria Gitman - 2011 - Journal of Symbolic Logic 76 (2):519 - 540.
    One of the numerous characterizations of a Ramsey cardinal κ involves the existence of certain types of elementary embeddings for transitive sets of size κ satisfying a large fragment of ZFC. We introduce new large cardinal axioms generalizing the Ramsey elementary embeddings characterization and show that they form a natural hierarchy between weakly compact cardinals and measurable cardinals. These new axioms serve to further our knowledge about the elementary embedding properties of smaller large cardinals, in particular those still consistent with (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Large Cardinals, Inner Models, and Determinacy: An Introductory Overview.P. D. Welch - 2015 - Notre Dame Journal of Formal Logic 56 (1):213-242.
    The interaction between large cardinals, determinacy of two-person perfect information games, and inner model theory has been a singularly powerful driving force in modern set theory during the last three decades. For the outsider the intellectual excitement is often tempered by the somewhat daunting technicalities, and the seeming length of study needed to understand the flow of ideas. The purpose of this article is to try and give a short, albeit rather rough, guide to the broad lines of development.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Greatly Erdős cardinals with some generalizations to the Chang and Ramsey properties.I. Sharpe & P. D. Welch - 2011 - Annals of Pure and Applied Logic 162 (11):863-902.
    • We define a notion of order of indiscernibility type of a structure by analogy with Mitchell order on measures; we use this to define a hierarchy of strong axioms of infinity defined through normal filters, the α-weakly Erdős hierarchy. The filters in this hierarchy can be seen to be generated by sets of ordinals where these indiscernibility orders on structures dominate the canonical functions.• The limit axiom of this is that of greatly Erdős and we use it to calibrate (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Jónsson cardinals, erdös cardinals, and the core model.W. J. Mitchell - 1999 - Journal of Symbolic Logic 64 (3):1065-1086.
    We show that if there is no inner model with a Woodin cardinal and the Steel core model K exists, then every Jónsson cardinal is Ramsey in K, and every δ-Jónsson cardinal is δ-Erdös in K. In the absence of the Steel core model K we prove the same conclusion for any model L[E] such that either V = L[E] is the minimal model for a Woodin cardinal, or there is no inner model with a Woodin cardinal and V is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Small models, large cardinals, and induced ideals.Peter Holy & Philipp Lücke - 2021 - Annals of Pure and Applied Logic 172 (2):102889.
    We show that many large cardinal notions up to measurability can be characterized through the existence of certain filters for small models of set theory. This correspondence will allow us to obtain a canonical way in which to assign ideals to many large cardinal notions. This assignment coincides with classical large cardinal ideals whenever such ideals had been defined before. Moreover, in many important cases, relations between these ideals reflect the ordering of the corresponding large cardinal properties both under direct (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Strong compactness and the ultrapower axiom I: the least strongly compact cardinal.Gabriel Goldberg - 2022 - Journal of Mathematical Logic 22 (2).
    Journal of Mathematical Logic, Volume 22, Issue 02, August 2022. The Ultrapower Axiom is a combinatorial principle concerning the structure of large cardinals that is true in all known canonical inner models of set theory. A longstanding test question for inner model theory is the equiconsistency of strongly compact and supercompact cardinals. In this paper, it is shown that under the Ultrapower Axiom, the least strongly compact cardinal is supercompact. A number of stronger results are established, setting the stage for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Indestructibility properties of Ramsey and Ramsey-like cardinals.Victoria Gitman & Thomas A. Johnstone - 2022 - Annals of Pure and Applied Logic 173 (6):103106.
    Download  
     
    Export citation  
     
    Bookmark  
  • A hierarchy of ramsey cardinals.Qi Feng - 1990 - Annals of Pure and Applied Logic 49 (3):257-277.
    Assuming the existence of a measurable cardinal, we define a hierarchy of Ramsey cardinals and a hierarchy of normal filters. We study some combinatorial properties of this hierarchy. We show that this hierarchy is absolute with respect to the Dodd-Jensen core model, extending a result of Mitchell which says that being Ramsey is absolute with respect to the core model.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Easton's theorem for Ramsey and strongly Ramsey cardinals.Brent Cody & Victoria Gitman - 2015 - Annals of Pure and Applied Logic 166 (9):934-952.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Inner models with large cardinal features usually obtained by forcing.Arthur W. Apter, Victoria Gitman & Joel David Hamkins - 2012 - Archive for Mathematical Logic 51 (3-4):257-283.
    We construct a variety of inner models exhibiting features usually obtained by forcing over universes with large cardinals. For example, if there is a supercompact cardinal, then there is an inner model with a Laver indestructible supercompact cardinal. If there is a supercompact cardinal, then there is an inner model with a supercompact cardinal κ for which 2κ = κ+, another for which 2κ = κ++ and another in which the least strongly compact cardinal is supercompact. If there is a (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations