Switch to: References

Add citations

You must login to add citations.
  1. Artificial intelligence and human autonomy: the case of driving automation.Fabio Fossa - 2024 - AI and Society:1-12.
    The present paper aims at contributing to the ethical debate on the impacts of artificial intelligence (AI) systems on human autonomy. More specifically, it intends to offer a clearer understanding of the design challenges to the effort of aligning driving automation technologies to this ethical value. After introducing the discussion on the ambiguous impacts that AI systems exert on human autonomy, the analysis zooms in on how the problem has been discussed in the literature on connected and automated vehicles (CAVs). (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Augmenting Morality through Ethics Education: the ACTWith model.Jeffrey White - 2024 - AI and Society:1-20.
    Recently in this journal, Jessica Morley and colleagues (AI & SOC 2023 38:411–423) review AI ethics and education, suggesting that a cultural shift is necessary in order to prepare students for their responsibilities in developing technology infrastructure that should shape ways of life for many generations. Current AI ethics guidelines are abstract and difficult to implement as practical moral concerns proliferate. They call for improvements in ethics course design, focusing on real-world cases and perspective-taking tools to immerse students in challenging (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Challenges of responsible AI in practice: scoping review and recommended actions.Malak Sadek, Emma Kallina, Thomas Bohné, Céline Mougenot, Rafael A. Calvo & Stephen Cave - forthcoming - AI and Society:1-17.
    Responsible AI (RAI) guidelines aim to ensure that AI systems respect democratic values. While a step in the right direction, they currently fail to impact practice. Our work discusses reasons for this lack of impact and clusters them into five areas: (1) the abstract nature of RAI guidelines, (2) the problem of selecting and reconciling values, (3) the difficulty of operationalising RAI success metrics, (4) the fragmentation of the AI pipeline, and (5) the lack of internal advocacy and accountability. Afterwards, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Evaluating the acceptability of ethical recommendations in industry 4.0: an ethics by design approach.Marc M. Anderson & Karën Fort - 2024 - AI and Society 39 (6):2989-3003.
    In this paper, we present the methodology we used in the European Horizon 2020 AI-PROFICIENT project, to evaluate the implementation of the ethical component of the project. The project is a 3-year collaboration between a university partner and industrial and tech partners, which aims to research the integration of AI services in heavy industry work settings. An AI ethics approach developed for the project has involved embedded ethical analysis of work contexts and design solutions and the generation of specific and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • SAF: Stakeholders’ Agreement on Fairness in the Practice of Machine Learning Development.Georgina Curto & Flavio Comim - 2023 - Science and Engineering Ethics 29 (4):1-19.
    This paper clarifies why bias cannot be completely mitigated in Machine Learning (ML) and proposes an end-to-end methodology to translate the ethical principle of justice and fairness into the practice of ML development as an ongoing agreement with stakeholders. The pro-ethical iterative process presented in the paper aims to challenge asymmetric power dynamics in the fairness decision making within ML design and support ML development teams to identify, mitigate and monitor bias at each step of ML systems development. The process (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Anything new under the sun? Insights from a history of institutionalized AI ethics.Simone Casiraghi - 2023 - Ethics and Information Technology 25 (2):1-14.
    Scholars, policymakers and organizations in the EU, especially at the level of the European Commission, have turned their attention to the ethics of (trustworthy and human-centric) Artificial Intelligence (AI). However, there has been little reflexivity on (1) the history of the ethics of AI as an institutionalized phenomenon and (2) the comparison to similar episodes of “ethification” in other fields, to highlight common (unresolved) challenges.Contrary to some mainstream narratives, which stress how the increasing attention to ethical aspects of AI is (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • AI ethics as subordinated innovation network.James Steinhoff - forthcoming - AI and Society:1-13.
    AI ethics is proposed, by the Big Tech companies which lead AI research and development, as the cure for diverse social problems posed by the commercialization of data-intensive technologies. It aims to reconcile capitalist AI production with ethics. However, AI ethics is itself now the subject of wide criticism; most notably, it is accused of being no more than “ethics washing” a cynical means of dissimulation for Big Tech, while it continues its business operations unchanged. This paper aims to critically (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Operationalizing the Ethics of Connected and Automated Vehicles. An Engineering Perspective.Fabio Fossa - 2022 - International Journal of Technoethics 13 (1):1-20.
    In response to the many social impacts of automated mobility, in September 2020 the European Commission published Ethics of Connected and Automated Vehicles, a report in which recommendations on road safety, privacy, fairness, explainability, and responsibility are drawn from a set of eight overarching principles. This paper presents the results of an interdisciplinary research where philosophers and engineers joined efforts to operationalize the guidelines advanced in the report. To this aim, we endorse a function-based working approach to support the implementation (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Deep Learning Meets Deep Democracy: Deliberative Governance and Responsible Innovation in Artificial Intelligence.Alexander Buhmann & Christian Fieseler - forthcoming - Business Ethics Quarterly:1-34.
    Responsible innovation in artificial intelligence calls for public deliberation: well-informed “deep democratic” debate that involves actors from the public, private, and civil society sectors in joint efforts to critically address the goals and means of AI. Adopting such an approach constitutes a challenge, however, due to the opacity of AI and strong knowledge boundaries between experts and citizens. This undermines trust in AI and undercuts key conditions for deliberation. We approach this challenge as a problem of situating the knowledge of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Operationalising AI ethics: barriers, enablers and next steps.Jessica Morley, Libby Kinsey, Anat Elhalal, Francesca Garcia, Marta Ziosi & Luciano Floridi - 2023 - AI and Society 38 (1):411-423.
    By mid-2019 there were more than 80 AI ethics guides available in the public domain. Despite this, 2020 saw numerous news stories break related to ethically questionable uses of AI. In part, this is because AI ethics theory remains highly abstract, and of limited practical applicability to those actually responsible for designing algorithms and AI systems. Our previous research sought to start closing this gap between the ‘what’ and the ‘how’ of AI ethics through the creation of a searchable typology (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Government regulation or industry self-regulation of AI? Investigating the relationships between uncertainty avoidance, people’s AI risk perceptions, and their regulatory preferences in Europe.Bartosz Wilczek, Sina Thäsler-Kordonouri & Maximilian Eder - forthcoming - AI and Society:1-15.
    Artificial Intelligence (AI) has the potential to influence people’s lives in various ways as it is increasingly integrated into important decision-making processes in key areas of society. While AI offers opportunities, it is also associated with risks. These risks have sparked debates about how AI should be regulated, whether through government regulation or industry self-regulation. AI-related risk perceptions can be shaped by national cultures, especially the cultural dimension of uncertainty avoidance. This raises the question of whether people in countries with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • From AI Ethics Principles to Practices: A Teleological Methodology to Apply AI Ethics Principles in The Defence Domain.Christopher Thomas, Alexander Blanchard & Mariarosaria Taddeo - 2024 - Philosophy and Technology 37 (1):1-21.
    This article provides a methodology for the interpretation of AI ethics principles to specify ethical criteria for the development and deployment of AI systems in high-risk domains. The methodology consists of a three-step process deployed by an independent, multi-stakeholder ethics board to: (1) identify the appropriate level of abstraction for modelling the AI lifecycle; (2) interpret prescribed principles to extract specific requirements to be met at each step of the AI lifecycle; and (3) define the criteria to inform purpose- and (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Integrating ethics in AI development: a qualitative study.Laura Arbelaez Ossa, Giorgia Lorenzini, Stephen R. Milford, David Shaw, Bernice S. Elger & Michael Rost - 2024 - BMC Medical Ethics 25 (1):1-11.
    Background While the theoretical benefits and harms of Artificial Intelligence (AI) have been widely discussed in academic literature, empirical evidence remains elusive regarding the practical ethical challenges of developing AI for healthcare. Bridging the gap between theory and practice is an essential step in understanding how to ethically align AI for healthcare. Therefore, this research examines the concerns and challenges perceived by experts in developing ethical AI that addresses the healthcare context and needs. Methods We conducted semi-structured interviews with 41 (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Code of Digital Ethics: laying the foundation for digital ethics in a science and technology company.Sarah J. Becker, André T. Nemat, Simon Lucas, René M. Heinitz, Manfred Klevesath & Jean Enno Charton - 2023 - AI and Society 38 (6):2629-2639.
    The rapid and dynamic nature of digital transformation challenges companies that wish to develop and deploy novel digital technologies. Like other actors faced with this transformation, companies need to find robust ways to ethically guide their innovations and business decisions. Digital ethics has recently featured in a plethora of both practical corporate guidelines and compilations of high-level principles, but there remains a gap concerning the development of sound ethical guidance in specific business contexts. As a multinational science and technology company (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reconstructing AI Ethics Principles: Rawlsian Ethics of Artificial Intelligence.Salla Westerstrand - 2024 - Science and Engineering Ethics 30 (5):1-21.
    The popularisation of Artificial Intelligence (AI) technologies has sparked discussion about their ethical implications. This development has forced governmental organisations, NGOs, and private companies to react and draft ethics guidelines for future development of ethical AI systems. Whereas many ethics guidelines address values familiar to ethicists, they seem to lack in ethical justifications. Furthermore, most tend to neglect the impact of AI on democracy, governance, and public deliberation. Existing research suggest, however, that AI can threaten key elements of western democracies (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Mapping the landscape of ethical considerations in explainable AI research.Luca Nannini, Marta Marchiori Manerba & Isacco Beretta - 2024 - Ethics and Information Technology 26 (3):1-22.
    With its potential to contribute to the ethical governance of AI, eXplainable AI (XAI) research frequently asserts its relevance to ethical considerations. Yet, the substantiation of these claims with rigorous ethical analysis and reflection remains largely unexamined. This contribution endeavors to scrutinize the relationship between XAI and ethical considerations. By systematically reviewing research papers mentioning ethical terms in XAI frameworks and tools, we investigate the extent and depth of ethical discussions in scholarly research. We observe a limited and often superficial (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Operationalising AI ethics: how are companies bridging the gap between practice and principles? An exploratory study.Javier Camacho Ibáñez & Mónica Villas Olmeda - 2022 - AI and Society 37 (4):1663-1687.
    Despite the increase in the research field of ethics in artificial intelligence, most efforts have focused on the debate about principles and guidelines for responsible AI, but not enough attention has been given to the “how” of applied ethics. This paper aims to advance the research exploring the gap between practice and principles in AI ethics by identifying how companies are applying those guidelines and principles in practice. Through a qualitative methodology based on 22 semi-structured interviews and two focus groups, (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Ethical governance of artificial intelligence for defence: normative tradeoffs for principle to practice guidance.Alexander Blanchard, Christopher Thomas & Mariarosaria Taddeo - forthcoming - AI and Society:1-14.
    The rapid diffusion of artificial intelligence (AI) technologies in the defence domain raises challenges for the ethical governance of these systems. A recent shift from the what to the how of AI ethics sees a nascent body of literature published by defence organisations focussed on guidance to implement AI ethics principles. These efforts have neglected a crucial intermediate step between principles and guidance concerning the elicitation of ethical requirements for specifying the guidance. In this article, we outline the key normative (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Towards trustworthy medical AI ecosystems – a proposal for supporting responsible innovation practices in AI-based medical innovation.Christian Herzog, Sabrina Blank & Bernd Carsten Stahl - forthcoming - AI and Society:1-21.
    In this article, we explore questions about the culture of trustworthy artificial intelligence (AI) through the lens of ecosystems. We draw on the European Commission’s Guidelines for Trustworthy AI and its philosophical underpinnings. Based on the latter, the trustworthiness of an AI ecosystem can be conceived of as being grounded by both the so-called rational-choice and motivation-attributing accounts—i.e., trusting is rational because solution providers deliver expected services reliably, while trust also involves resigning control by attributing one’s motivation, and hence, goals, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fugazi regulation for AI: strategic tolerance for ethics washing.Gleb Papyshev & Keith Jin Deng Chan - forthcoming - AI and Society:1-12.
    Regulation theory offers a unique perspective on the institutional aspects of digital capitalism’s accumulation regime. However, a gap exists in examining the associated mode of regulation. Based on the analysis of AI ethics washing phenomenon, we suggest the state is delicately balancing between fueling innovation and reducing uncertainty in emerging technologies. This balance leads to a unique mode of regulation, "Fugazi regulation," characterized by vaguely defined, non-enforceable moral principles with no specific implementation mechanisms. We propose a microeconomic model that rationalizes (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Principle-at-Risk Analysis (PaRA): Operationalising Digital Ethics by Bridging Principles and Operations of a Digital Ethics Advisory Panel.André T. Nemat, Sarah J. Becker, Simon Lucas, Sean Thomas, Isabel Gadea & Jean Enno Charton - 2023 - Minds and Machines 33 (4):737-760.
    Recent attempts to develop and apply digital ethics principles to address the challenges of the digital transformation leave organisations with an operationalisation gap. To successfully implement such guidance, they must find ways to translate high-level ethics frameworks into practical methods and tools that match their specific workflows and needs. Here, we describe the development of a standardised risk assessment tool, the Principle-at-Risk Analysis (PaRA), as a means to close this operationalisation gap for a key level of the ethics infrastructure at (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Ethics-based auditing of automated decision-making systems: intervention points and policy implications.Jakob Mökander & Maria Axente - 2023 - AI and Society 38 (1):153-171.
    Organisations increasingly use automated decision-making systems (ADMS) to inform decisions that affect humans and their environment. While the use of ADMS can improve the accuracy and efficiency of decision-making processes, it is also coupled with ethical challenges. Unfortunately, the governance mechanisms currently used to oversee human decision-making often fail when applied to ADMS. In previous work, we proposed that ethics-based auditing (EBA)—that is, a structured process by which ADMS are assessed for consistency with relevant principles or norms—can (a) help organisations (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Are AI systems biased against the poor? A machine learning analysis using Word2Vec and GloVe embeddings.Georgina Curto, Mario Fernando Jojoa Acosta, Flavio Comim & Begoña Garcia-Zapirain - forthcoming - AI and Society:1-16.
    Among the myriad of technical approaches and abstract guidelines proposed to the topic of AI bias, there has been an urgent call to translate the principle of fairness into the operational AI reality with the involvement of social sciences specialists to analyse the context of specific types of bias, since there is not a generalizable solution. This article offers an interdisciplinary contribution to the topic of AI and societal bias, in particular against the poor, providing a conceptual framework of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems.Jakob Mökander, Margi Sheth, David S. Watson & Luciano Floridi - 2023 - Minds and Machines 33 (1):221-248.
    Organisations that design and deploy artificial intelligence (AI) systems increasingly commit themselves to high-level, ethical principles. However, there still exists a gap between principles and practices in AI ethics. One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope. Put differently, the question to which systems and processes AI ethics principles ought to apply remains unanswered. Of course, there exists no universally accepted definition of AI, and different systems pose different ethical (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Beyond ideals: why the (medical) AI industry needs to motivate behavioural change in line with fairness and transparency values, and how it can do it.Alice Liefgreen, Netta Weinstein, Sandra Wachter & Brent Mittelstadt - 2024 - AI and Society 39 (5):2183-2199.
    Artificial intelligence (AI) is increasingly relied upon by clinicians for making diagnostic and treatment decisions, playing an important role in imaging, diagnosis, risk analysis, lifestyle monitoring, and health information management. While research has identified biases in healthcare AI systems and proposed technical solutions to address these, we argue that effective solutions require human engagement. Furthermore, there is a lack of research on how to motivate the adoption of these solutions and promote investment in designing AI systems that align with values (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The limitation of ethics-based approaches to regulating artificial intelligence: regulatory gifting in the context of Russia.Gleb Papyshev & Masaru Yarime - forthcoming - AI and Society:1-16.
    The effects that artificial intelligence (AI) technologies will have on society in the short- and long-term are inherently uncertain. For this reason, many governments are avoiding strict command and control regulations for this technology and instead rely on softer ethics-based approaches. The Russian approach to regulating AI is characterized by the prevalence of unenforceable ethical principles implemented via industry self-regulation. We analyze the emergence of the regulatory regime for AI in Russia to illustrate the limitations of this approach. The article (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Biden’s Executive Order on AI and the E.U.’s AI Act: A Comparative Computer-Ethical Analysis.Manuel Wörsdörfer - 2024 - Philosophy and Technology 37 (3):1-27.
    AI (ethics) initiatives are essential in bringing about fairer, safer, and more trustworthy AI systems. Yet, they also come with various drawbacks, including a lack of effective governance mechanisms, window-dressing, and ‘ethics shopping.’ To address those concerns, hard laws are necessary, and more and more countries are moving in this direction. Two of the most notable recent legislations include the Biden Administration’s Executive Order (EO) on AI and the E.U.’s AI Act (AIA). While several scholarly articles have evaluated the strengths (...)
    Download  
     
    Export citation  
     
    Bookmark