Switch to: References

Add citations

You must login to add citations.
  1. Easton's theorem for the tree property below ℵ.Šárka Stejskalová - 2021 - Annals of Pure and Applied Logic 172 (7):102974.
    Download  
     
    Export citation  
     
    Bookmark  
  • The special Aronszajn tree property.Mohammad Golshani & Yair Hayut - 2019 - Journal of Mathematical Logic 20 (1):2050003.
    Assuming the existence of a proper class of supercompact cardinals, we force a generic extension in which, for every regular cardinal [Formula: see text], there are [Formula: see text]-Aronszajn trees, and all such trees are special.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The strong tree property and the failure of SCH.Jin Du - 2019 - Archive for Mathematical Logic 58 (7-8):867-875.
    Fontanella :193–207, 2014) showed that if \ is an increasing sequence of supercompacts and \, then the strong tree property holds at \. Building on a proof by Neeman, we show that the strong tree property at \ is consistent with \, where \ is singular strong limit of countable cofinality.
    Download  
     
    Export citation  
     
    Bookmark  
  • Squares and narrow systems.Chris Lambie-Hanson - 2017 - Journal of Symbolic Logic 82 (3):834-859.
    A narrow system is a combinatorial object introduced by Magidor and Shelah in connection with work on the tree property at successors of singular cardinals. In analogy to the tree property, a cardinalκsatisfies thenarrow system propertyif every narrow system of heightκhas a cofinal branch. In this paper, we study connections between the narrow system property, square principles, and forcing axioms. We prove, assuming large cardinals, both that it is consistent that ℵω+1satisfies the narrow system property and$\square _{\aleph _\omega, < \aleph (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Fragility and indestructibility of the tree property.Spencer Unger - 2012 - Archive for Mathematical Logic 51 (5-6):635-645.
    We prove various theorems about the preservation and destruction of the tree property at ω2. Working in a model of Mitchell [9] where the tree property holds at ω2, we prove that ω2 still has the tree property after ccc forcing of size \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\aleph_1}$$\end{document} or adding an arbitrary number of Cohen reals. We show that there is a relatively mild forcing in this same model which destroys the tree property. Finally we (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The tree property below ℵ ω ⋅ 2.Spencer Unger - 2016 - Annals of Pure and Applied Logic 167 (3):247-261.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Diagonal supercompact Radin forcing.Omer Ben-Neria, Chris Lambie-Hanson & Spencer Unger - 2020 - Annals of Pure and Applied Logic 171 (10):102828.
    Motivated by the goal of constructing a model in which there are no κ-Aronszajn trees for any regular $k>\aleph_1$, we produce a model with many singular cardinals where both the singular cardinals hypothesis and weak square fail.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Strong and Super Tree Properties at Successors of Singular Cardinals.William Adkisson - 2024 - Journal of Symbolic Logic 89 (3):1251-1283.
    The strong tree property and ITP (also called the super tree property) are generalizations of the tree property that characterize strong compactness and supercompactness up to inaccessibility. That is, an inaccessible cardinal $\kappa $ is strongly compact if and only if the strong tree property holds at $\kappa $, and supercompact if and only if ITP holds at $\kappa $. We present several results motivated by the problem of obtaining the strong tree property and ITP at many successive cardinals simultaneously; (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Fragility and indestructibility II.Spencer Unger - 2015 - Annals of Pure and Applied Logic 166 (11):1110-1122.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A model of Cummings and Foreman revisited.Spencer Unger - 2014 - Annals of Pure and Applied Logic 165 (12):1813-1831.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The tree property and the continuum function below.Radek Honzik & Šárka Stejskalová - 2018 - Mathematical Logic Quarterly 64 (1-2):89-102.
    We say that a regular cardinal κ,, has the tree property if there are no κ‐Aronszajn trees; we say that κ has the weak tree property if there are no special κ‐Aronszajn trees. Starting with infinitely many weakly compact cardinals, we show that the tree property at every even cardinal,, is consistent with an arbitrary continuum function below which satisfies,. Next, starting with infinitely many Mahlo cardinals, we show that the weak tree property at every cardinal,, is consistent with an (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The tree property at double successors of singular cardinals of uncountable cofinality with infinite gaps.Mohammad Golshani & Alejandro Poveda - 2021 - Annals of Pure and Applied Logic 172 (1):102853.
    Download  
     
    Export citation  
     
    Bookmark  
  • The tree property at the successor of a singular limit of measurable cardinals.Mohammad Golshani - 2018 - Archive for Mathematical Logic 57 (1-2):3-25.
    Assume \ is a singular limit of \ supercompact cardinals, where \ is a limit ordinal. We present two methods for arranging the tree property to hold at \ while making \ the successor of the limit of the first \ measurable cardinals. The first method is then used to get, from the same assumptions, the tree property at \ with the failure of SCH at \. This extends results of Neeman and Sinapova. The second method is also used to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The tree property at the ℵ 2 n 's and the failure of SCH at ℵ ω.Sy-David Friedman & Radek Honzik - 2015 - Annals of Pure and Applied Logic 166 (4):526-552.
    Download  
     
    Export citation  
     
    Bookmark   3 citations