Switch to: References

Add citations

You must login to add citations.
  1. Groundwork for a Fallibilist Account of Mathematics.Silvia De Toffoli - 2021 - Philosophical Quarterly 7 (4):823-844.
    According to the received view, genuine mathematical justification derives from proofs. In this article, I challenge this view. First, I sketch a notion of proof that cannot be reduced to deduction from the axioms but rather is tailored to human agents. Secondly, I identify a tension between the received view and mathematical practice. In some cases, cognitively diligent, well-functioning mathematicians go wrong. In these cases, it is plausible to think that proof sets the bar for justification too high. I then (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Demostraciones «tópicamente puras» en la práctica matemática: un abordaje elucidatorio.Guillermo Nigro Puente - 2020 - Dissertation, Universidad de la República Uruguay
    Download  
     
    Export citation  
     
    Bookmark  
  • Explicaciones Geométrico-Diagramáticas en Física desde una Perspectiva Inferencial.Javier Anta - 2019 - Revista Colombiana de Filosofía de la Ciencia 38 (19).
    El primer objetivo de este artículo es mostrar que explicaciones genuinamente geométricas/matemáticas e intrínsecamente diagramáticas de fenómenos físicos no solo son posibles en la práctica científica, sino que además comportan un potencial epistémico que sus contrapartes simbólico-verbales carecen. Como ejemplo representativo utilizaremos la metodología geométrica de John Wheeler (1963) para calcular cantidades físicas en una reacción nuclear. Como segundo objetivo pretendemos analizar, desde un marco inferencial, la garantía epistémica de este tipo de explicaciones en términos de dependencia sintáctica y semántica (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • On Euclidean diagrams and geometrical knowledge.Tamires Dal Magro & Manuel J. García-Pérez - 2019 - Theoria. An International Journal for Theory, History and Foundations of Science 34 (2):255.
    We argue against the claim that the employment of diagrams in Euclidean geometry gives rise to gaps in the proofs. First, we argue that it is a mistake to evaluate its merits through the lenses of Hilbert’s formal reconstruction. Second, we elucidate the abilities employed in diagram-based inferences in the Elements and show that diagrams are mathematically reputable tools. Finally, we complement our analysis with a review of recent experimental results purporting to show that, not only is the Euclidean diagram-based (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A fresh look at research strategies in computational cognitive science: The case of enculturated mathematical problem solving.Regina E. Fabry & Markus Pantsar - 2019 - Synthese 198 (4):3221-3263.
    Marr’s seminal distinction between computational, algorithmic, and implementational levels of analysis has inspired research in cognitive science for more than 30 years. According to a widely-used paradigm, the modelling of cognitive processes should mainly operate on the computational level and be targeted at the idealised competence, rather than the actual performance of cognisers in a specific domain. In this paper, we explore how this paradigm can be adopted and revised to understand mathematical problem solving. The computational-level approach applies methods from (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The twofold role of diagrams in Euclid’s plane geometry.Marco Panza - 2012 - Synthese 186 (1):55-102.
    Proposition I.1 is, by far, the most popular example used to justify the thesis that many of Euclid’s geometric arguments are diagram-based. Many scholars have recently articulated this thesis in different ways and argued for it. My purpose is to reformulate it in a quite general way, by describing what I take to be the twofold role that diagrams play in Euclid’s plane geometry (EPG). Euclid’s arguments are object-dependent. They are about geometric objects. Hence, they cannot be diagram-based unless diagrams (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Geometry and Spatial Intuition: A Genetic Approach.Rene Jagnow - 2003 - Dissertation, Mcgill University (Canada)
    In this thesis, I investigate the nature of geometric knowledge and its relationship to spatial intuition. My goal is to rehabilitate the Kantian view that Euclid's geometry is a mathematical practice, which is grounded in spatial intuition, yet, nevertheless, yields a type of a priori knowledge about the structure of visual space. I argue for this by showing that Euclid's geometry allows us to derive knowledge from idealized visual objects, i.e., idealized diagrams by means of non-formal logical inferences. By developing (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The role of diagrams in mathematical arguments.David Sherry - 2008 - Foundations of Science 14 (1-2):59-74.
    Recent accounts of the role of diagrams in mathematical reasoning take a Platonic line, according to which the proof depends on the similarity between the perceived shape of the diagram and the shape of the abstract object. This approach is unable to explain proofs which share the same diagram in spite of drawing conclusions about different figures. Saccheri’s use of the bi-rectangular isosceles quadrilateral in Euclides Vindicatus provides three such proofs. By forsaking abstract objects it is possible to give a (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Philosophy and Cognitive Sciences: Proceedings of the 16th International Wittgenstein Symposium (Kirchberg Am Wechsel, Austria 1993).Roberto Casati & Barry Smith (eds.) - 1994 - Vienna: Wien: Hölder-Pichler-Tempsky.
    Online collection of papers by Devitt, Dretske, Guarino, Hochberg, Jackson, Petitot, Searle, Tye, Varzi and other leading thinkers on philosophy and the foundations of cognitive Science. Topics dealt with include: Wittgenstein and Cognitive Science, Content and Object, Logic and Foundations, Language and Linguistics, and Ontology and Mereology.
    Download  
     
    Export citation  
     
    Bookmark  
  • Rethinking Logic: Logic in Relation to Mathematics, Evolution, and Method.Carlo Cellucci - 2013 - Dordrecht, Netherland: Springer.
    This volume examines the limitations of mathematical logic and proposes a new approach to logic intended to overcome them. To this end, the book compares mathematical logic with earlier views of logic, both in the ancient and in the modern age, including those of Plato, Aristotle, Bacon, Descartes, Leibniz, and Kant. From the comparison it is apparent that a basic limitation of mathematical logic is that it narrows down the scope of logic confining it to the study of deduction, without (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • The Epistemological Import of Euclidean Diagrams.Daniele Molinini - 2016 - Kairos 16 (1):124-141.
    In this paper I concentrate on Euclidean diagrams, namely on those diagrams that are licensed by the rules of Euclid’s plane geometry. I shall overview some philosophical stances that have recently been proposed in philosophy of mathematics to account for the role of such diagrams in mathematics, and more particularly in Euclid’s Elements. Furthermore, I shall provide an original analysis of the epistemic role that Euclidean diagrams may have in empirical sciences, more specifically in physics. I shall claim that, although (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Philosophy of mathematics: Making a fresh start.Carlo Cellucci - 2013 - Studies in History and Philosophy of Science Part A 44 (1):32-42.
    The paper distinguishes between two kinds of mathematics, natural mathematics which is a result of biological evolution and artificial mathematics which is a result of cultural evolution. On this basis, it outlines an approach to the philosophy of mathematics which involves a new treatment of the method of mathematics, the notion of demonstration, the questions of discovery and justification, the nature of mathematical objects, the character of mathematical definition, the role of intuition, the role of diagrams in mathematics, and the (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A Pattern Theory of Scaffolding.Albert Newen & Regina E. Fabry - forthcoming - Review of Philosophy and Psychology:1-26.
    In recent years, philosophers have developed accounts of cognitive and affective scaffolding to describe the contribution of environmental resources to the realization of mental abilities. However, an integrative account, which captures scaffolding relations in general terms and across domains, is currently lacking. To close this gap, this paper proposes a pattern theory of scaffolding. According to this theory, the functional and causal role of an environmental resource for an individual agent or a group of agents concerning a mental ability in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth table logic, with a survey of embeddability results.Neil Tennant - 1989 - Notre Dame Journal of Formal Logic 30 (3):459-484.
    Kalrnaric. We set out a system T, consisting of normal proofs constructed by means of elegantly symmetrical introduction and elimination rules. In the system T there are two requirements, called ( ) and ()), on applications of discharge rules. T is sound and complete for Kalmaric arguments. ( ) requires nonvacuous discharge of assumptions; ()) requires that the assumption discharged be the sole one available of highest degree. We then consider a 'Duhemian' extension T*, obtained simply by dropping the requirement (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What perception is doing, and what it is not doing, in mathematical reasoning.Dennis Lomas - 2002 - British Journal for the Philosophy of Science 53 (2):205-223.
    What is perception doing in mathematical reasoning? To address this question, I discuss the role of perception in geometric reasoning. Perception of the shape properties of concrete diagrams provides, I argue, a surrogate consciousness of the shape properties of the abstract geometric objects depicted in the diagrams. Some of what perception is not doing in mathematical reasoning is also discussed. I take issue with both Parsons and Maddy. Parsons claims that we perceive a certain type of abstract object. Maddy claims (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Tonking a theory of content: an inferentialist rejoinder.Jon Cogburn - 2004 - Logic and Logical Philosophy 13:31-55.
    If correct, Christopher Peacocke’s [20] “manifestationism without verificationism,” would explode the dichotomy between realism and inferentialism in the contemporary philosophy of language. I first explicate Peacocke’s theory, defending it from a criticism of Neil Tennant’s. This involves devising a recursive definition for grasp of logical contents along the lines Peacocke suggests. Unfortunately though, the generalized account reveals the Achilles’ heel of the whole theory. By inventing a new logical operator with the introduction rule for the existential quantifier and the elimination (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Computing machinery and emergence: The aesthetics and metaphysics of video games.Jon Cogburn & Mark Silcox - 2004 - Minds and Machines 15 (1):73-89.
    We build on some of Daniel Dennett’s ideas about predictive indispensability to characterize properties of video games discernable by people as computationally emergent if, and only if: (1) they can be instantiated by a computing machine, and (2) there is no algorithm for detecting instantiations of them. We then use this conception of emergence to provide support to the aesthetic ideas of Stanley Fish and to illuminate some aspects of the Chomskyan program in cognitive science.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Signs of Logic: Peircean Themes on the Philosophy of Language, Games, and Communication.Ahti-Viekko Pietarinen - 2006 - Dordrecht, Netherland: Springer.
    Charles Sanders Peirce was one of the United States’ most original and profound thinkers, and a prolific writer. Peirce’s game theory-based approaches to the semantics and pragmatics of signs and language, to the theory of communication, and to the evolutionary emergence of signs, provide a toolkit for contemporary scholars and philosophers. Drawing on unpublished manuscripts, the book offers a rich, fresh picture of the achievements of a remarkable man.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Diagrams in Mathematics.Carlo Cellucci - 2019 - Foundations of Science 24 (3):583-604.
    In the last few decades there has been a revival of interest in diagrams in mathematics. But the revival, at least at its origin, has been motivated by adherence to the view that the method of mathematics is the axiomatic method, and specifically by the attempt to fit diagrams into the axiomatic method, translating particular diagrams into statements and inference rules of a formal system. This approach does not deal with diagrams qua diagrams, and is incapable of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Survey on the Recent Studies of the Role of Diagrams in Mathematics from the Viewpoint of Philosophy of Mathematics.Hiroyuki Inaoka - 2014 - Kagaku Tetsugaku 47 (1):67-82.
    In this paper, we would present an overview of the recent studies on the role of diagram in mathematics. Traditionally, mathematicians and philosophers had thought that diagram should not be used in mathematical proofs, because relying on diagram would cause to various types of fallacies. But recently, some logicians and philosophers try to show that diagram has a legitimate place in proving mathematical theorems. We would review such trends of studies and provide some perspective from viewpoint of philosophy of mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Extending Intensions: Exploring Deleuze and Guattari's Critique of Formal Logic in the Case of Intensional Logics.Michael J. Ardoline - 2024 - Deleuze and Guattari Studies 18 (4):459-484.
    In What is Philosophy?, Deleuze and Guattari critique the relationship between formal logic and philosophy. They argue that since philosophy is the creation of concepts that are intensional, and formal logic reduces concepts to their extension, formal logic then has no special providence to decide philosophical questions. This may strike the logic-inclined philosopher as outdated given that there are now formal intensional logics designed to model meaning rather than reference. However, it will be shown that these logics too fail to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Redescubriendo la lógica diagramática de Leibniz.J. Martín Castro Manzano - 2016 - Tópicos: Revista de Filosofía 52:89-116.
    En este artículo recuperamos la lógica diagramática lineal de Leibniz para la silogística y descubrimos sus propiedades lógicas y computacionales a través de una aproximación formal en términos metalógicos, lo cual es algo que, hasta donde sabemos, aún falta por hacerse. Así, en esta contribución buscamos, respectivamente, dos metas, una histórica y una lógica: i) prestar más atención a los aspectos algorítmicos del sistema diagramático lineal de Leibniz para la silogística, de los cuales creemos que han sido desdeñados por un (...)
    Download  
     
    Export citation  
     
    Bookmark