Switch to: References

Add citations

You must login to add citations.
  1. Neutrality and Force in Field's Epistemological Objection to Platonism.Ylwa Sjölin Wirling - 2024 - Inquiry: An Interdisciplinary Journal of Philosophy 67 (9):3461-3480.
    Field’s challenge to platonists is the challenge to explain the reliable match between mathematical truth and belief. The challenge grounds an objection claiming that platonists cannot provide such an explanation. This objection is often taken to be both neutral with respect to controversial epistemological assumptions, and a comparatively forceful objection against platonists. I argue that these two characteristics are in tension: no construal of the objection in the current literature realises both, and there are strong reasons to think that no (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Neutrality and Force in Field’s epistemological objection to platonism.Ylwa Sjölin Wirling - 2024 - Inquiry: An Interdisciplinary Journal of Philosophy 67 (9):3461-3480.
    Field’s challenge to platonists is the challenge to explain the reliable match between mathematical truth and belief. The challenge grounds an objection claiming that platonists cannot provide such an explanation. This objection is often taken to be both neutral with respect to controversial epistemological assumptions, and a comparatively forceful objection against platonists. I argue that these two characteristics are in tension: no construal of the objection in the current literature realises both, and there are strong reasons to think that no (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Platonism in the Philosophy of Mathematics.Øystein Linnebo - forthcoming - Stanford Encyclopedia of Philosophy.
    Platonism about mathematics (or mathematical platonism) isthe metaphysical view that there are abstract mathematical objectswhose existence is independent of us and our language, thought, andpractices. Just as electrons and planets exist independently of us, sodo numbers and sets. And just as statements about electrons and planetsare made true or false by the objects with which they are concerned andthese objects' perfectly objective properties, so are statements aboutnumbers and sets. Mathematical truths are therefore discovered, notinvented., Existence. There are mathematical objects.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Social constructivism in mathematics? The promise and shortcomings of Julian Cole’s institutional account.Jenni Rytilä - 2021 - Synthese 199 (3-4):11517-11540.
    The core idea of social constructivism in mathematics is that mathematical entities are social constructs that exist in virtue of social practices, similar to more familiar social entities like institutions and money. Julian C. Cole has presented an institutional version of social constructivism about mathematics based on John Searle’s theory of the construction of the social reality. In this paper, I consider what merits social constructivism has and examine how well Cole’s institutional account meets the challenge of accounting for the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mathematical platonism and the causal relevance of abstracta.Barbara Gail Montero - 2022 - Synthese 200 (6):1-18.
    Many mathematicians are platonists: they believe that the axioms of mathematics are true because they express the structure of a nonspatiotemporal, mind independent, realm. But platonism is plagued by a philosophical worry: it is unclear how we could have knowledge of an abstract, realm, unclear how nonspatiotemporal objects could causally affect our spatiotemporal cognitive faculties. Here I aim to make room in our metaphysical picture of the world for the causal relevance of abstracta.
    Download  
     
    Export citation  
     
    Bookmark   2 citations