Switch to: Citations

Add references

You must login to add references.
  1. The Reality of Field’s Epistemological Challenge to Platonism.David Liggins - 2018 - Erkenntnis 83 (5):1027-1031.
    In the introduction to his Realism, mathematics and modality, and in earlier papers included in that collection, Hartry Field offered an epistemological challenge to platonism in the philosophy of mathematics. Justin Clarke-Doane Truth, objects, infinity: New perspectives on the philosophy of Paul Benacerraf, 2016) argues that Field’s challenge is an illusion: it does not pose a genuine problem for platonism. My aim is to show that Clarke-Doane’s argument relies on a misunderstanding of Field’s challenge.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • On the Plurality of Worlds.David Lewis - 1986 - Revue Philosophique de la France Et de l'Etranger 178 (3):388-390.
    Download  
     
    Export citation  
     
    Bookmark   2840 citations  
  • Belief, Truth and Knowledge.David M. Armstrong - 1973 - London,: Cambridge University Press.
    A wide-ranging study of the central concepts in epistemology - belief, truth and knowledge. Professor Armstrong offers a dispositional account of general beliefs and of knowledge of general propositions. Belief about particular matters of fact are described as structures in the mind of the believer which represent or 'map' reality, while general beliefs are dispositions to extend the 'map' or introduce casual relations between portions of the map according to general rules. 'Knowledge' denotes the reliability of such beliefs as representations (...)
    Download  
     
    Export citation  
     
    Bookmark   289 citations  
  • On Field’s Epistemological Argument Against Platonism.Ivan Kasa - 2010 - Studia Logica 96 (2):141-147.
    Hartry Field's formulation of an epistemological argument against platonism is only valid if knowledge is constrained by a causal clause. Contrary to recent claims (e.g. in Liggins (2006), Liggins (2010)), Field's argument therefore fails the very same criterion usually taken to discredit Benacerraf's earlier version.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Plurality of Worlds.David K. Lewis - 1986 - Malden, Mass.: Wiley-Blackwell.
    This book is a defense of modal realism; the thesis that our world is but one of a plurality of worlds, and that the individuals that inhabit our world are only a few out of all the inhabitants of all the worlds. Lewis argues that the philosophical utility of modal realism is a good reason for believing that it is true.
    Download  
     
    Export citation  
     
    Bookmark   2251 citations  
  • Moral Epistemology: The Mathematics Analogy.Justin Clarke-Doane - 2012 - Noûs 48 (2):238-255.
    There is a long tradition comparing moral knowledge to mathematical knowledge. In this paper, I discuss apparent similarities and differences between knowledge in the two areas, realistically conceived. I argue that many of these are only apparent, while others are less philosophically significant than might be thought. The picture that emerges is surprising. There are definitely differences between epistemological arguments in the two areas. However, these differences, if anything, increase the plausibility of moral realism as compared to mathematical realism. It (...)
    Download  
     
    Export citation  
     
    Bookmark   55 citations  
  • (1 other version)What is the Benacerraf Problem?Justin Clarke-Doane - 2017 - In Fabrice Pataut Jody Azzouni, Paul Benacerraf Justin Clarke-Doane, Jacques Dubucs Sébastien Gandon, Brice Halimi Jon Perez Laraudogoitia, Mary Leng Ana Leon-Mejia, Antonio Leon-Sanchez Marco Panza, Fabrice Pataut Philippe de Rouilhan & Andrea Sereni Stuart Shapiro (eds.), New Perspectives on the Philosophy of Paul Benacerraf: Truth, Objects, Infinity (Fabrice Pataut, Editor). Springer.
    In "Mathematical Truth", Paul Benacerraf articulated an epistemological problem for mathematical realism. His formulation of the problem relied on a causal theory of knowledge which is now widely rejected. But it is generally agreed that Benacerraf was onto a genuine problem for mathematical realism nevertheless. Hartry Field describes it as the problem of explaining the reliability of our mathematical beliefs, realistically construed. In this paper, I argue that the Benacerraf Problem cannot be made out. There simply is no intelligible problem (...)
    Download  
     
    Export citation  
     
    Bookmark   79 citations  
  • (3 other versions)What is Justified Belief?Alvin I. Goldman - 1979 - In George Pappas (ed.), Justification and Knowledge: New Studies in Epistemology. Boston: D. Reidel. pp. 1-25.
    The aim of this paper is to sketch a theory of justified belief. What I have in mind is an explanatory theory, one that explains in a general way why certain beliefs are counted as justified and others as unjustified. Unlike some traditional approaches, I do not try to prescribe standards for justification that differ from, or improve upon, our ordinary standards. I merely try to explicate the ordinary standards, which are, I believe, quite different from those of many classical, (...)
    Download  
     
    Export citation  
     
    Bookmark   911 citations  
  • What is Absolute Undecidability?†.Justin Clarke-Doane - 2012 - Noûs 47 (3):467-481.
    It is often supposed that, unlike typical axioms of mathematics, the Continuum Hypothesis (CH) is indeterminate. This position is normally defended on the ground that the CH is undecidable in a way that typical axioms are not. Call this kind of undecidability “absolute undecidability”. In this paper, I seek to understand what absolute undecidability could be such that one might hope to establish that (a) CH is absolutely undecidable, (b) typical axioms are not absolutely undecidable, and (c) if a mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Epistemological objections to platonism.David Liggins - 2010 - Philosophy Compass 5 (1):67-77.
    Many philosophers posit abstract entities – where something is abstract if it is acausal and lacks spatio-temporal location. Theories, types, characteristics, meanings, values and responsibilities are all good candidates for abstractness. Such things raise an epistemological puzzle: if they are abstract, then how can we have any epistemic access to how they are? If they are invisible, intangible and never make anything happen, then how can we ever discover anything about them? In this article, I critically examine epistemological objections to (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Frege's conception of numbers as objects.Crispin Wright - 1983 - [Aberdeen]: Aberdeen University Press.
    Download  
     
    Export citation  
     
    Bookmark   242 citations  
  • Is there a good epistemological argument against platonism?David Liggins - 2006 - Analysis 66 (2):135–141.
    Platonism in the philosophy of mathematics is the doctrine that there are mathematical objects such as numbers. John Burgess and Gideon Rosen have argued that that there is no good epistemological argument against platonism. They propose a dilemma, claiming that epistemological arguments against platonism either rely on a dubious epistemology, or resemble a dubious sceptical argument concerning perceptual knowledge. Against Burgess and Rosen, I show that an epistemological anti- platonist argument proposed by Hartry Field avoids both horns of their dilemma.
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Number determiners, numbers, and arithmetic.Thomas Hofweber - 2005 - Philosophical Review 114 (2):179-225.
    In his groundbreaking Grundlagen, Frege (1884) pointed out that number words like ‘four’ occur in ordinary language in two quite different ways and that this gives rise to a philosophical puzzle. On the one hand ‘four’ occurs as an adjective, which is to say that it occurs grammatically in sentences in a position that is commonly occupied by adjectives. Frege’s example was (1) Jupiter has four moons, where the occurrence of ‘four’ seems to be just like that of ‘green’ in (...)
    Download  
     
    Export citation  
     
    Bookmark   66 citations  
  • Logicism and the ontological commitments of arithmetic.Harold T. Hodes - 1984 - Journal of Philosophy 81 (3):123-149.
    Download  
     
    Export citation  
     
    Bookmark   126 citations  
  • Is mathematical knowledge just logical knowledge?Hartry Field - 1984 - Philosophical Review 93 (4):509-552.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • True enough.Catherine Z. Elgin - 2004 - Philosophical Issues 14 (1):113–131.
    Truth is standardly considered a requirement on epistemic acceptability. But science and philosophy deploy models, idealizations and thought experiments that prescind from truth to achieve other cognitive ends. I argue that such felicitous falsehoods function as cognitively useful fictions. They are cognitively useful because they exemplify and afford epistemic access to features they share with the relevant facts. They are falsehoods in that they diverge from the facts. Nonetheless, they are true enough to serve their epistemic purposes. Theories that contain (...)
    Download  
     
    Export citation  
     
    Bookmark   326 citations  
  • (2 other versions)Mathematical truth.Paul Benacerraf - 1973 - Journal of Philosophy 70 (19):661-679.
    Download  
     
    Export citation  
     
    Bookmark   703 citations  
  • True Enough.Catherine Z. Elgin - 2017 - Cambridge: MIT Press.
    Science relies on models and idealizations that are known not to be true. Even so, science is epistemically reputable. To accommodate science, epistemology should focus on understanding rather than knowledge and should recognize that the understanding of a topic need not be factive. This requires reconfiguring the norms of epistemic acceptability. If epistemology has the resources to accommodate science, it will also have the resources to show that art too advances understanding.
    Download  
     
    Export citation  
     
    Bookmark   200 citations  
  • (1 other version)On the Plurality of Worlds.William G. Lycan - 1988 - Journal of Philosophy 85 (1):42-47.
    Download  
     
    Export citation  
     
    Bookmark   757 citations  
  • (1 other version)Critical notice.Hartry Field - 1984 - Canadian Journal of Philosophy 14 (4):637-662.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Epistemological Challenges to Mathematical Platonism.Øystein Linnebo - 2006 - Philosophical Studies 129 (3):545-574.
    Since Benacerraf’s “Mathematical Truth” a number of epistemological challenges have been launched against mathematical platonism. I first argue that these challenges fail because they unduely assimilate mathematics to empirical science. Then I develop an improved challenge which is immune to this criticism. Very roughly, what I demand is an account of how people’s mathematical beliefs are responsive to the truth of these beliefs. Finally I argue that if we employ a semantic truth-predicate rather than just a deflationary one, there surprisingly (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Deflating Existential Consequence: A Case for Nominalism.Jody Azzouni - 2004 - Oxford, England: Oup Usa.
    If we must take mathematical statements to be true, must we also believe in the existence of abstract eternal invisible mathematical objects accessible only by the power of pure thought? Jody Azzouni says no, and he claims that the way to escape such commitments is to accept true statements which are about objects that don't exist in any sense at all. Azzouni illustrates what the metaphysical landscape looks like once we avoid a militant Realism which forces our commitment to anything (...)
    Download  
     
    Export citation  
     
    Bookmark   117 citations  
  • The Deflationary Conception of Truth.Hartry Field - 1986 - In Graham Macdonald & Crispin Wright (eds.), Fact, Science and Morality: Essays on A. J. Ayer's Language, Truth and Logic. Blackwell. pp. 55-117.
    Download  
     
    Export citation  
     
    Bookmark   104 citations  
  • Realism, Mathematics, and Modality.Hartry Field - 1988 - Philosophical Topics 16 (1):57-107.
    Download  
     
    Export citation  
     
    Bookmark   442 citations  
  • Believing the axioms. I.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (2):481-511.
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Believing the axioms. II.Penelope Maddy - 1988 - Journal of Symbolic Logic 53 (3):736-764.
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • Existence claims and causality.Colin Cheyne - 1998 - Australasian Journal of Philosophy 76 (1):34 – 47.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Causality, reliabilism, and mathematical knowledge.Albert Casullo - 1992 - Philosophy and Phenomenological Research 52 (3):557-584.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Benacerraf's Dilemma.W. D. Hart - 1991 - Critica 23 (68):87-103.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Ontological realism and sentential form.Eileen S. Nutting - 2018 - Synthese 195 (11):5021-5036.
    The standard argument for the existence of distinctively mathematical objects like numbers has two main premises: some mathematical claims are true, and the truth of those claims requires the existence of distinctively mathematical objects. Most nominalists deny. Those who deny typically reject Quine’s criterion of ontological commitment. I target a different assumption in a standard type of semantic argument for. Benacerraf’s semantic argument, for example, relies on the claim that two sentences, one about numbers and the other about cities, have (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Subject with no Object.Zoltan Gendler Szabo, John P. Burgess & Gideon Rosen - 1999 - Philosophical Review 108 (1):106.
    This is the first systematic survey of modern nominalistic reconstructions of mathematics, and for this reason alone it should be read by everyone interested in the philosophy of mathematics and, more generally, in questions concerning abstract entities. In the bulk of the book, the authors sketch a common formal framework for nominalistic reconstructions, outline three major strategies such reconstructions can follow, and locate proposals in the literature with respect to these strategies. The discussion is presented with admirable precision and clarity, (...)
    Download  
     
    Export citation  
     
    Bookmark   162 citations  
  • (3 other versions)What is justified belief?Alvin I. Goldman - 2003 - In Steven Luper (ed.), Essential Knowledge: Readings in Epistemology. Longman. pp. 178.
    Download  
     
    Export citation  
     
    Bookmark   180 citations  
  • What is the problem of mathematical knowledge?Michael Potter - 2007 - In Mary Leng, Alexander Paseau & Michael D. Potter (eds.), Mathematical Knowledge. Oxford, England: Oxford University Press.
    Suggests that the recent emphasis on Benacerraf's access problem locates the peculiarity of mathematical knowledge in the wrong place. Instead we should focus on the sense in which mathematical concepts are or might be "armchair concepts" – concepts about which non-trivial knowledge is obtainable a priori.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • To bridge Gödel’s gap.Eileen S. Nutting - 2016 - Philosophical Studies 173 (8):2133-2150.
    In “Mathematical Truth,” Paul Benacerraf raises an epistemic challenge for mathematical platonists. In this paper, I examine the assumptions that motivate Benacerraf’s original challenge, and use them to construct a new causal challenge for the epistemology of mathematics. This new challenge, which I call ‘Gödel’s Gap’, appeals to intuitive insights into mathematical knowledge. Though it is a causal challenge, it does not rely on any obviously objectionable constraints on knowledge. As a result, it is more compelling than the original challenge. (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Belief, Truth and Knowledge.Peter D. Klein - 1976 - Philosophical Review 85 (2):225.
    Download  
     
    Export citation  
     
    Bookmark   210 citations  
  • Frege's Conception of Numbers as Objects. [REVIEW]John P. Burgess - 1984 - Philosophical Review 93 (4):638-640.
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Frege’s Conception of Numbers as Objects.Crispin Wright - 1983 - Critical Philosophy 1 (1):97.
    Download  
     
    Export citation  
     
    Bookmark   342 citations  
  • III-Reference by Abstraction.ØYstein Linnebo - 2012 - Proceedings of the Aristotelian Society 112 (1pt1):45-71.
    Frege suggests that criteria of identity should play a central role in the explanation of reference, especially to abstract objects. This paper develops a precise model of how we can come to refer to a particular kind of abstract object, namely, abstract letter types. It is argued that the resulting abstract referents are ‘metaphysically lightweight’.
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Mathematical Epistemology.Penelope Maddy - 1984 - The Monist 67 (1):46-55.
    The tenor of much recent work in the philosophy of mathematics has been dictated by the popular assumption that Platonism is defunct. Some embrace that assumption and look for alternatives, others deny it and attempt to revive Platonism, but either way it is the starting point. The fate of Platonism took center stage with the appearance of Paul Benacerraf’s “Mathematical truth”, but a decade has passed since then, and the philosophical climate has changed. Most important, the quarter from which Platonism (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations