Switch to: References

Add citations

You must login to add citations.
  1. A Basic Dual Intuitionistic Logic and Some of its Extensions Included in G3DH.Gemma Robles & José M. Méndez - 2020 - Journal of Logic, Language and Information 30 (1):117-138.
    The logic DHb is the result of extending Sylvan and Plumwood’s minimal De Morgan logic BM with a dual intuitionistic negation of the type Sylvan defined for the extension CCω of da Costa’s paraconsistent logic Cω. We provide Routley–Meyer ternary relational semantics with a set of designated points for DHb and a wealth of its extensions included in G3DH, the expansion of G3+ with a dual intuitionistic negation of the kind considered by Sylvan (G3+ is the positive fragment of Gödelian (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Empirical Negation, Co-negation and Contraposition Rule I: Semantical Investigations.Satoru Niki - 2020 - Bulletin of the Section of Logic 49 (3):231-253.
    We investigate the relationship between M. De's empirical negation in Kripke and Beth Semantics. It turns out empirical negation, as well as co-negation, corresponds to different logics under different semantics. We then establish the relationship between logics related to these negations under unified syntax and semantics based on R. Sylvan's CCω.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • An axiomatic approach to CG′3 logic.Miguel Pérez-Gaspar, Alejandro Hernández-Tello, José Arrazola Ramírez & Mauricio Osorio Galindo - 2020 - Logic Journal of the IGPL 28 (6):1218-1232.
    In memoriam José Arrazola Ramírez The logic $\textbf{G}^{\prime}_3$ was introduced by Osorio et al. in 2008; it is a three-valued logic, closely related to the paraconsistent logic $\textbf{CG}^{\prime}_3$ introduced by Osorio et al. in 2014. The logic $\textbf{CG}^{\prime}_3$ is defined in terms of a multi-valued semantics and has the property that each theorem in $\textbf{G}^{\prime}_3$ is a theorem in $\textbf{CG}^{\prime}_3$. Kripke-type semantics has been given to $\textbf{CG}^{\prime}_3$ in two different ways by Borja et al. in 2016. In this work, we (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Equivalence among RC-type paraconsistent logics.Mauricio Osorio & José Abel Castellanos Joo - 2017 - Logic Journal of the IGPL 25 (2):239-252.
    In this article we review several paraconsistent logics from different authors to ‘close the gaps’ between them. Since paraconsistent logics is a broad area of research, it is possible that equivalent paraconsistent logics have different names. What we meant is that we provide connections between the logics studied comparing their different semantical approaches for a near future be able to obtain missing semantical characterization of different logics. We are introducing the term RC-type logics to denote a class of logics that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation