Order:
  1. Genuine paracomplete logics.Verónica Borja Macías, Marcelo E. Coniglio & Alejandro Hernández-Tello - 2023 - Logic Journal of the IGPL 31 (5):961-987.
    In 2016, Béziau introduces a restricted notion of paraconsistency, the so-called genuine paraconsistency. A logic is genuine paraconsistent if it rejects the laws $\varphi,\neg \varphi \vdash \psi$ and $\vdash \neg (\varphi \wedge \neg \varphi)$. In that paper, the author analyzes, among the three-valued logics, which of them satisfy this property. If we consider multiple-conclusion consequence relations, the dual properties of those above-mentioned are $\vdash \varphi, \neg \varphi$ and $\neg (\varphi \vee \neg \varphi) \vdash$. We call genuine paracomplete logics those rejecting (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. G'3 as the logic of modal 3-valued Heyting algebras.Marcelo E. Coniglio, Aldo Figallo-Orellano, Alejandro Hernández-Tello & Miguel Perez-Gaspar - 2022 - IfCoLog Journal of Logics and Their Applications 9 (1):175-197.
    In 2001, W. Carnielli and Marcos considered a 3-valued logic in order to prove that the schema ϕ ∨ (ϕ → ψ) is not a theorem of da Costa’s logic Cω. In 2006, this logic was studied (and baptized) as G'3 by Osorio et al. as a tool to define semantics of logic programming. It is known that the truth-tables of G'3 have the same expressive power than the one of Łukasiewicz 3-valued logic as well as the one of Gödel (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. Paracomplete logics which are dual to the paraconsistent logics L3A and L3B.Alejandro Hernández-Tello, Verónica Borja-Macı́as & Marcelo E. Coniglio - 2020 - LANMR 2019: Proceedings of the 12th Latin American Workshop on Logic/Languages, Algorithms and New Methods of Reasoning.
    In 2016 Beziau, introduce a more restricted concept of paraconsistency, namely the genuine paraconsistency. He calls genuine paraconsistent logic those logic rejecting φ, ¬φ |- ψ and |- ¬(φ ∧ ¬φ). In that paper the author analyzes, among the three-valued logics, which of these logics satisfy this property. If we consider multiple-conclusion consequence relations, the dual properties of those above mentioned are: |- φ, ¬φ, and ¬(ψ ∨ ¬ψ) |- . We call genuine paracomplete logics those rejecting the mentioned properties. (...)
    Download  
     
    Export citation  
     
    Bookmark