Switch to: Citations

Add references

You must login to add references.
  1. Nearly every normal modal logic is paranormal.Joao Marcos - 2005 - Logique Et Analyse 48 (189-192):279-300.
    An overcomplete logic is a logic that ‘ceases to make the difference’: According to such a logic, all inferences hold independently of the nature of the statements involved. A negation-inconsistent logic is a logic having at least one model that satisfies both some statement and its negation. A negation-incomplete logic has at least one model according to which neither some statement nor its negation are satisfied. Paraconsistent logics are negation-inconsistent yet non-overcomplete; paracomplete logics are negation-incomplete yet non-overcomplete. A paranormal logic (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • Extensions of Priest-da Costa Logic.Thomas Macaulay Ferguson - 2014 - Studia Logica 102 (1):145-174.
    In this paper, we look at applying the techniques from analyzing superintuitionistic logics to extensions of the cointuitionistic Priest-da Costa logic daC (introduced by Graham Priest as “da Costa logic”). The relationship between the superintuitionistic axioms- definable in daC- and extensions of Priest-da Costa logic (sdc-logics) is analyzed and applied to exploring the gap between the maximal si-logic SmL and classical logic in the class of sdc-logics. A sequence of strengthenings of Priest-da Costa logic is examined and employed to pinpoint (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Dual Intuitionistic Logic and a Variety of Negations: The Logic of Scientific Research.Yaroslav Shramko - 2005 - Studia Logica 80 (2-3):347-367.
    We consider a logic which is semantically dual (in some precise sense of the term) to intuitionistic. This logic can be labeled as “falsification logic”: it embodies the Popperian methodology of scientific discovery. Whereas intuitionistic logic deals with constructive truth and non-constructive falsity, and Nelson's logic takes both truth and falsity as constructive notions, in the falsification logic truth is essentially non-constructive as opposed to falsity that is conceived constructively. We also briefly clarify the relationships of our falsification logic to (...)
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • LK, LJ, Dual Intuitionistic Logic, and Quantum Logic.Hiroshi Aoyama - 2004 - Notre Dame Journal of Formal Logic 45 (4):193-213.
    In this paper, we study the relationship among classical logic, intuitionistic logic, and quantum logic . These logics are related in an interesting way and are not far apart from each other, as is widely believed. The results in this paper show how they are related with each other through a dual intuitionistic logic . Our study is completely syntactical.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Formal inconsistency and evolutionary databases.Walter A. Carnielli, João Marcos & Sandra De Amo - 2000 - Logic and Logical Philosophy 8 (2):115-152.
    This paper introduces new logical systems which axiomatize a formal representation of inconsistency (here taken to be equivalent to contradictoriness) in classical logic. We start from an intuitive semantical account of inconsistent data, fixing some basic requirements, and provide two distinct sound and complete axiomatics for such semantics, LFI1 and LFI2, as well as their first-order extensions, LFI1* and LFI2*, depending on which additional requirements are considered. These formal systems are examples of what we dub Logics of Formal Inconsistency (LFI) (...)
    Download  
     
    Export citation  
     
    Bookmark   57 citations  
  • Brief study of G'3 logic.Mauricio Osorio Galindo & José Luis Carballido Carranza - 2008 - Journal of Applied Non-Classical Logics 18 (4):475-499.
    We present a Hilbert-style axiomatization of a recently introduced logic, called G'3 G'3 is based on a 3-valued semantics. We prove a soundness and completeness theorem. The replacement theorem holds in G'3. As it has already been shown in previous work, G'3 can express some non-monotonic semantics. We prove that G'3can define the same class of functions as Lukasiewicz 3 valued logic. Moreover, we identify some normal forms for this logic.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Limits for Paraconsistent Calculi.Walter A. Carnielli & João Marcos - 1999 - Notre Dame Journal of Formal Logic 40 (3):375-390.
    This paper discusses how to define logics as deductive limits of sequences of other logics. The case of da Costa's hierarchy of increasingly weaker paraconsistent calculi, known as $ \mathcal {C}$n, 1 $ \leq$ n $ \leq$ $ \omega$, is carefully studied. The calculus $ \mathcal {C}$$\scriptstyle \omega$, in particular, constitutes no more than a lower deductive bound to this hierarchy and differs considerably from its companions. A long standing problem in the literature (open for more than 35 years) is (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Extensions of the Lewis system S5.Schiller Joe Scroggs - 1951 - Journal of Symbolic Logic 16 (2):112-120.
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Dualising Intuitionictic Negation.Graham Priest - 2009 - Principia: An International Journal of Epistemology 13 (2):165-184.
    One of Da Costa’s motives when he constructed the paraconsistent logic C! was to dualise the negation of intuitionistic logic. In this paper I explore a different way of going about this task. A logic is defined by taking the Kripke semantics for intuitionistic logic, and dualising the truth conditions for negation. Various properties of the logic are established, including its relation to C!. Tableau and natural deduction systems for the logic are produced, as are appropriate algebraic structures. The paper (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Revisiting $\mathbb{Z}$.Mauricio Osorio, José Luis Carballido & Claudia Zepeda - 2014 - Notre Dame Journal of Formal Logic 55 (1):129-155.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Dual-Intuitionistic Logic.Igor Urbas - 1996 - Notre Dame Journal of Formal Logic 37 (3):440-451.
    The sequent system LDJ is formulated using the same connectives as Gentzen's intuitionistic sequent system LJ, but is dual in the following sense: (i) whereas LJ is singular in the consequent, LDJ is singular in the antecedent; (ii) whereas LJ has the same sentential counter-theorems as classical LK but not the same theorems, LDJ has the same sentential theorems as LK but not the same counter-theorems. In particular, LDJ does not reject all contradictions and is accordingly paraconsistent. To obtain a (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Strict paraconsistency of truth-degree preserving intuitionistic logic with dual negation.J. L. Castiglioni & R. C. Ertola Biraben - 2014 - Logic Journal of the IGPL 22 (2):268-273.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Paraconsistent logic from a modal viewpoint.Jean-Yves Béziau - 2005 - Journal of Applied Logic 3 (1):7-14.
    Download  
     
    Export citation  
     
    Bookmark   23 citations