Switch to: References

Add citations

You must login to add citations.
  1. Reverse formalism 16.Sam Sanders - 2020 - Synthese 197 (2):497-544.
    In his remarkable paper Formalism 64, Robinson defends his eponymous position concerning the foundations of mathematics, as follows:Any mention of infinite totalities is literally meaningless.We should act as if infinite totalities really existed. Being the originator of Nonstandard Analysis, it stands to reason that Robinson would have often been faced with the opposing position that ‘some infinite totalities are more meaningful than others’, the textbook example being that of infinitesimals. For instance, Bishop and Connes have made such claims regarding infinitesimals, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the connection between Nonstandard Analysis and Constructive Analysis.Sam Sanders - forthcoming - Logique Et Analyse.
    Constructive Analysis and Nonstandard Analysis are often characterized as completely antipodal approaches to analysis. We discuss the possibility of capturing the central notion of Constructive Analysis (i.e. algorithm, finite procedure or explicit construction) by a simple concept inside Nonstandard Analysis. To this end, we introduce Omega-invariance and argue that it partially satisfies our goal. Our results provide a dual approach to Erik Palmgren's development of Nonstandard Analysis inside constructive mathematics.
    Download  
     
    Export citation  
     
    Bookmark  
  • Nonstandard Functional Interpretations and Categorical Models.Amar Hadzihasanovic & Benno van den Berg - 2017 - Notre Dame Journal of Formal Logic 58 (3):343-380.
    Recently, the second author, Briseid, and Safarik introduced nonstandard Dialectica, a functional interpretation capable of eliminating instances of familiar principles of nonstandard arithmetic—including overspill, underspill, and generalizations to higher types—from proofs. We show that the properties of this interpretation are mirrored by first-order logic in a constructive sheaf model of nonstandard arithmetic due to Moerdijk, later developed by Palmgren, and draw some new connections between nonstandard principles and principles that are rejected by strict constructivism. Furthermore, we introduce a variant of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Ultrasheaves and Double Negation.Jonas Eliasson & Steve Awodey - 2004 - Notre Dame Journal of Formal Logic 45 (4):235-245.
    Moerdijk has introduced a topos of sheaves on a category of filters. Following his suggestion, we prove that its double negation subtopos is the topos of sheaves on the subcategory of ultrafilters - the ultrasheaves. We then use this result to establish a double negation translation of results between the topos of ultrasheaves and the topos on filters.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Developments in constructive nonstandard analysis.Erik Palmgren - 1998 - Bulletin of Symbolic Logic 4 (3):233-272.
    We develop a constructive version of nonstandard analysis, extending Bishop's constructive analysis with infinitesimal methods. A full transfer principle and a strong idealisation principle are obtained by using a sheaf-theoretic construction due to I. Moerdijk. The construction is, in a precise sense, a reduced power with variable filter structure. We avoid the nonconstructive standard part map by the use of nonstandard hulls. This leads to an infinitesimal analysis which includes nonconstructive theorems such as the Heine-Borel theorem, the Cauchy-Peano existence theorem (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations