Switch to: References

Add citations

You must login to add citations.
  1. The prehistory of the subsystems of second-order arithmetic.Walter Dean & Sean Walsh - 2017 - Review of Symbolic Logic 10 (2):357-396.
    This paper presents a systematic study of the prehistory of the traditional subsystems of second-order arithmetic that feature prominently in the reverse mathematics program of Friedman and Simpson. We look in particular at: (i) the long arc from Poincar\'e to Feferman as concerns arithmetic definability and provability, (ii) the interplay between finitism and the formalization of analysis in the lecture notes and publications of Hilbert and Bernays, (iii) the uncertainty as to the constructive status of principles equivalent to Weak K\"onig's (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Truth, Pretense and the Liar Paradox.Bradley Armour-Garb & James A. Woodbridge - 2015 - In T. Achourioti, H. Galinon, J. Martínez Fernández & K. Fujimoto (eds.), Unifying the Philosophy of Truth. Dordrecht: Imprint: Springer. pp. 339-354.
    In this paper we explain our pretense account of truth-talk and apply it in a diagnosis and treatment of the Liar Paradox. We begin by assuming that some form of deflationism is the correct approach to the topic of truth. We then briefly motivate the idea that all T-deflationists should endorse a fictionalist view of truth-talk, and, after distinguishing pretense-involving fictionalism (PIF) from error- theoretic fictionalism (ETF), explain the merits of the former over the latter. After presenting the basic framework (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Proof theory in philosophy of mathematics.Andrew Arana - 2010 - Philosophy Compass 5 (4):336-347.
    A variety of projects in proof theory of relevance to the philosophy of mathematics are surveyed, including Gödel's incompleteness theorems, conservation results, independence results, ordinal analysis, predicativity, reverse mathematics, speed-up results, and provability logics.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Truth and speed-up.Martin Fischer - 2014 - Review of Symbolic Logic 7 (2):319-340.
    In this paper, we investigate the phenomenon ofspeed-upin the context of theories of truth. We focus on axiomatic theories of truth extending Peano arithmetic. We are particularly interested on whether conservative extensions of PA have speed-up and on how this relates to a deflationist account. We show that disquotational theories have no significant speed-up, in contrast to some compositional theories, and we briefly assess the philosophical implications of these results.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Expressive Power of Truth.Martin Fischer & Leon Horsten - 2015 - Review of Symbolic Logic 8 (2):345-369.
    There are two perspectives from which formal theories can be viewed. On the one hand, one can take a theory to be about some privileged models. On the other hand, one can take all models of a theory to be on a par. In contrast with what is usually done in philosophical debates, we adopt the latter viewpoint. Suppose that from this perspective we want to add an adequate truth predicate to a background theory. Then on the one hand the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Mathematics and Set Theory:数学と集合論.Sakaé Fuchino - 2018 - Journal of the Japan Association for Philosophy of Science 46 (1):33-47.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ramsey’s theorem for pairs, collection, and proof size.Leszek Aleksander Kołodziejczyk, Tin Lok Wong & Keita Yokoyama - 2023 - Journal of Mathematical Logic 24 (2).
    We prove that any proof of a [Formula: see text] sentence in the theory [Formula: see text] can be translated into a proof in [Formula: see text] at the cost of a polynomial increase in size. In fact, the proof in [Formula: see text] can be obtained by a polynomial-time algorithm. On the other hand, [Formula: see text] has nonelementary speedup over the weaker base theory [Formula: see text] for proofs of [Formula: see text] sentences. We also show that for (...)
    Download  
     
    Export citation  
     
    Bookmark