Switch to: Citations

Add references

You must login to add references.
  1. Finitism.W. W. Tait - 1981 - Journal of Philosophy 78 (9):524-546.
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   236 citations  
  • Factorization of polynomials and °1 induction.S. G. Simpson - 1986 - Annals of Pure and Applied Logic 31:289.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • (1 other version)Logic Colloquium ’85.Jesús María Larrazabal - 1985 - Theoria: Revista de Teoría, Historia y Fundamentos de la Ciencia 1 (1):353-353.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • What can be done for Mathematical Logic.G. Kreisel - 1967 - In Ralph Schoenman (ed.), Bertrand Russell: Philosopher of the Century. London, England: Allen & Unwin. pp. 273--303.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Mathematical Introduction to Logic.Herbert Enderton - 2001 - Bulletin of Symbolic Logic 9 (3):406-407.
    Download  
     
    Export citation  
     
    Bookmark   189 citations  
  • Proof Theory.Gaisi Takeuti - 1990 - Studia Logica 49 (1):160-161.
    Download  
     
    Export citation  
     
    Bookmark   166 citations  
  • (1 other version)Fragments of arithmetic.Wilfried Sieg - 1985 - Annals of Pure and Applied Logic 28 (1):33-71.
    We establish by elementary proof-theoretic means the conservativeness of two subsystems of analysis over primitive recursive arithmetic. The one subsystem was introduced by Friedman [6], the other is a strengthened version of a theory of Minc [14]; each has been shown to be of considerable interest for both mathematical practice and metamathematical investigations. The foundational significance of such conservation results is clear: they provide a direct finitist justification of the part of mathematical practice formalizable in these subsystems. The results are (...)
    Download  
     
    Export citation  
     
    Bookmark   53 citations  
  • (1 other version)Formalizing forcing arguments in subsystems of second-order arithmetic.Jeremy Avigad - 1996 - Annals of Pure and Applied Logic 82 (2):165-191.
    We show that certain model-theoretic forcing arguments involving subsystems of second-order arithmetic can be formalized in the base theory, thereby converting them to effective proof-theoretic arguments. We use this method to sharpen the conservation theorems of Harrington and Brown-Simpson, giving an effective proof that WKL+0 is conservative over RCA0 with no significant increase in the lengths of proofs.
    Download  
     
    Export citation  
     
    Bookmark   27 citations