Switch to: References

Add citations

You must login to add citations.
  1. Effective choice and boundedness principles in computable analysis.Vasco Brattka & Guido Gherardi - 2011 - Bulletin of Symbolic Logic 17 (1):73-117.
    In this paper we study a new approach to classify mathematical theorems according to their computational content. Basically, we are asking the question which theorems can be continuously or computably transferred into each other? For this purpose theorems are considered via their realizers which are operations with certain input and output data. The technical tool to express continuous or computable relations between such operations is Weihrauch reducibility and the partially ordered degree structure induced by it. We have identified certain choice (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Weihrauch Goes Brouwerian.Vasco Brattka & Guido Gherardi - 2020 - Journal of Symbolic Logic 85 (4):1614-1653.
    We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inside the Muchnik degrees I: Discontinuity, learnability and constructivism.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (5):1058-1114.
    Every computable function has to be continuous. To develop computability theory of discontinuous functions, we study low levels of the arithmetical hierarchy of nonuniformly computable functions on Baire space. First, we classify nonuniformly computable functions on Baire space from the viewpoint of learning theory and piecewise computability. For instance, we show that mind-change-bounded learnability is equivalent to finite View the MathML source2-piecewise computability 2 denotes the difference of two View the MathML sourceΠ10 sets), error-bounded learnability is equivalent to finite View (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Real computation with least discrete advice: A complexity theory of nonuniform computability with applications to effective linear algebra.Martin Ziegler - 2012 - Annals of Pure and Applied Logic 163 (8):1108-1139.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Bolzano–Weierstrass Theorem is the jump of Weak Kőnig’s Lemma.Vasco Brattka, Guido Gherardi & Alberto Marcone - 2012 - Annals of Pure and Applied Logic 163 (6):623-655.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Weihrauch degrees, omniscience principles and weak computability.Vasco Brattka & Guido Gherardi - 2011 - Journal of Symbolic Logic 76 (1):143 - 176.
    In this paper we study a reducibility that has been introduced by Klaus Weihrauch or, more precisely, a natural extension for multi-valued functions on represented spaces. We call the corresponding equivalence classes Weihrauch degrees and we show that the corresponding partial order induces a lower semi-lattice. It turns out that parallelization is a closure operator for this semi-lattice and that the parallelized Weihrauch degrees even form a lattice into which the Medvedev lattice and the Turing degrees can be embedded. The (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Discontinuity Problem.Vasco Brattka - 2023 - Journal of Symbolic Logic 88 (3):1191-1212.
    Matthias Schröder has asked the question whether there is a weakest discontinuous problem in the topological version of the Weihrauch lattice. Such a problem can be considered as the weakest unsolvable problem. We introduce the discontinuity problem, and we show that it is reducible exactly to the effectively discontinuous problems, defined in a suitable way. However, in which sense this answers Schröder’s question sensitively depends on the axiomatic framework that is chosen, and it is a positive answer if we work (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Universality, optimality, and randomness deficiency.Rupert Hölzl & Paul Shafer - 2015 - Annals of Pure and Applied Logic 166 (10):1049-1069.
    Download  
     
    Export citation  
     
    Bookmark  
  • Closed choice and a uniform low basis theorem.Vasco Brattka, Matthew de Brecht & Arno Pauly - 2012 - Annals of Pure and Applied Logic 163 (8):986-1008.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • On the Uniform Computational Content of the Baire Category Theorem.Vasco Brattka, Matthew Hendtlass & Alexander P. Kreuzer - 2018 - Notre Dame Journal of Formal Logic 59 (4):605-636.
    We study the uniform computational content of different versions of the Baire category theorem in the Weihrauch lattice. The Baire category theorem can be seen as a pigeonhole principle that states that a complete metric space cannot be decomposed into countably many nowhere dense pieces. The Baire category theorem is an illuminating example of a theorem that can be used to demonstrate that one classical theorem can have several different computational interpretations. For one, we distinguish two different logical versions of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Searching for an analogue of atr0 in the Weihrauch lattice.Takayuki Kihara, Alberto Marcone & Arno Pauly - 2020 - Journal of Symbolic Logic 85 (3):1006-1043.
    There are close similarities between the Weihrauch lattice and the zoo of axiom systems in reverse mathematics. Following these similarities has often allowed researchers to translate results from one setting to the other. However, amongst the big five axiom systems from reverse mathematics, so far $\mathrm {ATR}_0$ has no identified counterpart in the Weihrauch degrees. We explore and evaluate several candidates, and conclude that the situation is complicated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations