Switch to: References

Add citations

You must login to add citations.
  1. The strength of compactness in Computability Theory and Nonstandard Analysis.Dag Normann & Sam Sanders - 2019 - Annals of Pure and Applied Logic 170 (11):102710.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Connected choice and the Brouwer fixed point theorem.Vasco Brattka, Stéphane Le Roux, Joseph S. Miller & Arno Pauly - 2019 - Journal of Mathematical Logic 19 (1):1950004.
    We study the computational content of the Brouwer Fixed Point Theorem in the Weihrauch lattice. Connected choice is the operation that finds a point in a non-empty connected closed set given by negative information. One of our main results is that for any fixed dimension the Brouwer Fixed Point Theorem of that dimension is computably equivalent to connected choice of the Euclidean unit cube of the same dimension. Another main result is that connected choice is complete for dimension greater than (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Completion of choice.Vasco Brattka & Guido Gherardi - 2021 - Annals of Pure and Applied Logic 172 (3):102914.
    We systematically study the completion of choice problems in the Weihrauch lattice. Choice problems play a pivotal rôle in Weihrauch complexity. For one, they can be used as landmarks that characterize important equivalences classes in the Weihrauch lattice. On the other hand, choice problems also characterize several natural classes of computable problems, such as finite mind change computable problems, non-deterministically computable problems, Las Vegas computable problems and effectively Borel measurable functions. The closure operator of completion generates the concept of total (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Universality, optimality, and randomness deficiency.Rupert Hölzl & Paul Shafer - 2015 - Annals of Pure and Applied Logic 166 (10):1049-1069.
    Download  
     
    Export citation  
     
    Bookmark  
  • Closed choice and a uniform low basis theorem.Vasco Brattka, Matthew de Brecht & Arno Pauly - 2012 - Annals of Pure and Applied Logic 163 (8):986-1008.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Using Ramsey’s theorem once.Jeffry L. Hirst & Carl Mummert - 2019 - Archive for Mathematical Logic 58 (7-8):857-866.
    We show that \\) cannot be proved with one typical application of \\) in an intuitionistic extension of \ to higher types, but that this does not remain true when the law of the excluded middle is added. The argument uses Kohlenbach’s axiomatization of higher order reverse mathematics, results related to modified reducibility, and a formalization of Weihrauch reducibility.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the strength of marriage theorems and uniformity.Makoto Fujiwara, Kojiro Higuchi & Takayuki Kihara - 2014 - Mathematical Logic Quarterly 60 (3):136-153.
    Kierstead showed that every computable marriage problem has a computable matching under the assumption of computable expanding Hall condition and computable local finiteness for boys and girls. The strength of the marriage theorem reaches or if computable expanding Hall condition or computable local finiteness for girls is weakened. In contrast, the provability of the marriage theorem is maintained in even if local finiteness for boys is completely removed. Using these conditions, we classify the strength of variants of marriage theorems in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Two direct proofs that LLPO implies the detachable fan theorem.D. S. Bridges, J. E. Dent & M. N. McKubre-Jordens - 2013 - Logic Journal of the IGPL 21 (5):830-835.
    Download  
     
    Export citation  
     
    Bookmark  
  • On the Uniform Computational Content of the Baire Category Theorem.Vasco Brattka, Matthew Hendtlass & Alexander P. Kreuzer - 2018 - Notre Dame Journal of Formal Logic 59 (4):605-636.
    We study the uniform computational content of different versions of the Baire category theorem in the Weihrauch lattice. The Baire category theorem can be seen as a pigeonhole principle that states that a complete metric space cannot be decomposed into countably many nowhere dense pieces. The Baire category theorem is an illuminating example of a theorem that can be used to demonstrate that one classical theorem can have several different computational interpretations. For one, we distinguish two different logical versions of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • On the uniform computational content of ramsey’s theorem.Vasco Brattka & Tahina Rakotoniaina - 2017 - Journal of Symbolic Logic 82 (4):1278-1316.
    We study the uniform computational content of Ramsey’s theorem in the Weihrauch lattice. Our central results provide information on how Ramsey’s theorem behaves under product, parallelization, and jumps. From these results we can derive a number of important properties of Ramsey’s theorem. For one, the parallelization of Ramsey’s theorem for cardinalityn≥ 1 and an arbitrary finite number of colorsk≥ 2 is equivalent to then-th jump of weak Kőnig’s lemma. In particular, Ramsey’s theorem for cardinalityn≥ 1 is${\bf{\Sigma }}_{n + 2}^0$-measurable in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Inside the Muchnik degrees I: Discontinuity, learnability and constructivism.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (5):1058-1114.
    Every computable function has to be continuous. To develop computability theory of discontinuous functions, we study low levels of the arithmetical hierarchy of nonuniformly computable functions on Baire space. First, we classify nonuniformly computable functions on Baire space from the viewpoint of learning theory and piecewise computability. For instance, we show that mind-change-bounded learnability is equivalent to finite View the MathML source2-piecewise computability 2 denotes the difference of two View the MathML sourceΠ10 sets), error-bounded learnability is equivalent to finite View (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The Bolzano–Weierstrass Theorem is the jump of Weak Kőnig’s Lemma.Vasco Brattka, Guido Gherardi & Alberto Marcone - 2012 - Annals of Pure and Applied Logic 163 (6):623-655.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Inside the Muchnik degrees II: The degree structures induced by the arithmetical hierarchy of countably continuous functions.K. Higuchi & T. Kihara - 2014 - Annals of Pure and Applied Logic 165 (6):1201-1241.
    It is known that infinitely many Medvedev degrees exist inside the Muchnik degree of any nontrivial Π10 subset of Cantor space. We shed light on the fine structures inside these Muchnik degrees related to learnability and piecewise computability. As for nonempty Π10 subsets of Cantor space, we show the existence of a finite-Δ20-piecewise degree containing infinitely many finite-2-piecewise degrees, and a finite-2-piecewise degree containing infinitely many finite-Δ20-piecewise degrees 2 denotes the difference of two Πn0 sets), whereas the greatest degrees in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Algebraic properties of the first-order part of a problem.Giovanni Soldà & Manlio Valenti - 2023 - Annals of Pure and Applied Logic 174 (7):103270.
    Download  
     
    Export citation  
     
    Bookmark  
  • Searching for an analogue of atr0 in the Weihrauch lattice.Takayuki Kihara, Alberto Marcone & Arno Pauly - 2020 - Journal of Symbolic Logic 85 (3):1006-1043.
    There are close similarities between the Weihrauch lattice and the zoo of axiom systems in reverse mathematics. Following these similarities has often allowed researchers to translate results from one setting to the other. However, amongst the big five axiom systems from reverse mathematics, so far $\mathrm {ATR}_0$ has no identified counterpart in the Weihrauch degrees. We explore and evaluate several candidates, and conclude that the situation is complicated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Weihrauch degrees, omniscience principles and weak computability.Vasco Brattka & Guido Gherardi - 2011 - Journal of Symbolic Logic 76 (1):143 - 176.
    In this paper we study a reducibility that has been introduced by Klaus Weihrauch or, more precisely, a natural extension for multi-valued functions on represented spaces. We call the corresponding equivalence classes Weihrauch degrees and we show that the corresponding partial order induces a lower semi-lattice. It turns out that parallelization is a closure operator for this semi-lattice and that the parallelized Weihrauch degrees even form a lattice into which the Medvedev lattice and the Turing degrees can be embedded. The (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • On notions of computability-theoretic reduction between Π21 principles.Denis R. Hirschfeldt & Carl G. Jockusch - 2016 - Journal of Mathematical Logic 16 (1):1650002.
    Several notions of computability-theoretic reducibility between [Formula: see text] principles have been studied. This paper contributes to the program of analyzing the behavior of versions of Ramsey’s Theorem and related principles under these notions. Among other results, we show that for each [Formula: see text], there is an instance of RT[Formula: see text] all of whose solutions have PA degree over [Formula: see text] and use this to show that König’s Lemma lies strictly between RT[Formula: see text] and RT[Formula: see (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Real computation with least discrete advice: A complexity theory of nonuniform computability with applications to effective linear algebra.Martin Ziegler - 2012 - Annals of Pure and Applied Logic 163 (8):1108-1139.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • From Bolzano‐Weierstraß to Arzelà‐Ascoli.Alexander P. Kreuzer - 2014 - Mathematical Logic Quarterly 60 (3):177-183.
    We show how one can obtain solutions to the Arzelà‐Ascoli theorem using suitable applications of the Bolzano‐Weierstraß principle. With this, we can apply the results from and obtain a classification of the strength of instances of the Arzelà‐Ascoli theorem and a variant of it. Let be the statement that each equicontinuous sequence of functions contains a subsequence that converges uniformly with the rate and let be the statement that each such sequence contains a subsequence which converges uniformly but possibly without (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Searching problems above arithmetical transfinite recursion.Yudai Suzuki & Keita Yokoyama - 2024 - Annals of Pure and Applied Logic 175 (10):103488.
    Download  
     
    Export citation  
     
    Bookmark